Skip to main content

Advertisement

Log in

Thermal Stability and Residual Stresses in Additively Manufactured Single and Multi-material Systems

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A sequential coupled thermo-mechanical model was developed for laser-based direct energy deposition of single- IN718 and multi-material IN718-Ti6Al4V systems to monitor the thermal stability, solidification characteristics and origin of the residual stresses in each successively deposited layer in real-time. A qualitative agreement was observed between the model and experimental measurements of temperature field and residual stress in the ten layered build system. The substitution of the IN718 substrate with Ti6Al4V alloy caused remarkable temperature rise (~ 220 K) in the preliminary deposited layers due to the high thermal energy accumulation in Ti6Al4V, leading to relatively low solidification velocity (2.02 mm/s) and large melt pool (0.95 mm). The heat sink effect of the substrate was effective up to the deposition of five-layers. The calculated solidification parameters, i.e., temperature gradient, G and solidification velocity, R suggested a columnar structured interface for both systems in the solidification map. The primary arm dendritic spacing (PDAS) ranging from 8.9 to 21.7 μm increased to 10.8 to 24.6 μm on changing the substrate from IN718 (10IN/IN) to Ti6Al4V (10IN/Ti). The overall tensile residual stress reduced from 655 MPa in the 10IN/IN to 621 MPa in the 10IN/Ti due to the lowered thermal gradient. However, an interesting reversal of maximum tensile residual stress, σ11 location from the top (tenth layer) to the first layer occurred on changing the substrate from IN718 to Ti6Al4V due to the substantial difference in the coefficient of thermal expansion (ΔCTE ~ 4.3 × 10–6 K−1) at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.Y. Zhou, J. Fu, and Y. He: Adv. Funct. Mater., 2020, vol. 30, pp. 1–38.

    Google Scholar 

  2. A. Le Duigou, M. Castro, R. Bevan, and N. Martin: Mater. Des., 2016, vol. 96, pp. 106–14.

    Article  Google Scholar 

  3. Y.W.D. Tay, M.Y. Li, and M.J. Tan: J. Mater. Process. Technol., 2019, vol. 271, pp. 261–70.

    Article  Google Scholar 

  4. A. Bandyopadhyay and B. Heer: Mater. Sci. Eng. R, 2018, vol. 129, pp. 1–6.

    Article  Google Scholar 

  5. E. Mirkoohi, J.R. Dobbs, and S.Y. Liang: Int. J. Adv. Manuf. Technol., 2020, vol. 106, pp. 4105–21.

    Article  Google Scholar 

  6. E. Mirkoohi, D.E. Sievers, H. Garmestani, and S.Y. Liang: CIRP J. Manuf. Sci. Technol., 2020, vol. 28, pp. 52–67.

    Article  Google Scholar 

  7. E. Mirkoohi, J.R. Dobbs, and S.Y. Liang: J. Manuf. Process., 2020, vol. 58, pp. 41–54.

    Article  Google Scholar 

  8. Z.C. Fang, Z.L. Wu, C.G. Huang, and C.W. Wu: Opt. Laser Technol., 2020, vol. 129, p. 106283.

    Article  CAS  Google Scholar 

  9. Q. Wu, T. Mukherjee, C. Liu, J. Lu, and T. DebRoy: Addit. Manuf., 2019, vol. 29, p. 100808.

    CAS  Google Scholar 

  10. A.M. Kamara, W. Wang, S. Marimuthu, and L. Li: Proc. Inst. Mech. Eng. Part B, 2011, vol. 225, pp. 87–99.

    Article  CAS  Google Scholar 

  11. Q. Jia and D. Gu: J. Alloys Compd., 2014, vol. 585, pp. 713–21.

    Article  CAS  Google Scholar 

  12. S.Y. Gaol, Y.Z. Zhang, L.K. Shi, and B.L. Du: 2007, pp. 171–80.

  13. S. Maietta, A. Gloria, G. Improta, M. Richetta, R. De Santis, and M. Martorelli: J. Healthc. Eng., 2019, https://doi.org/10.1155/2019/3212594.

    Article  Google Scholar 

  14. C. Qiu, N.J.E. Adkins, and M.M. Attallah: Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–39.

    Article  CAS  Google Scholar 

  15. L.Y. Chen, J.C. Huang, C.H. Lin, C.T. Pan, S.Y. Chen, T.L. Yang, D.Y. Lin, H.K. Lin, and J.S.C. Jang: Mater. Sci. Eng. A, 2017, vol. 682, pp. 389–95.

    Article  CAS  Google Scholar 

  16. P. Kyvelou, H. Slack, D. Daskalaki Mountanou, M.A. Wadee, T. Ben Britton, C. Buchanan, and L. Gardner: Mater. Des., 2020, vol. 192, p. 108675.

    Article  Google Scholar 

  17. V. Laghi, L. Tonelli, M. Palermo, M. Bruggi, R. Sola, L. Ceschini, and T. Trombetti: Addit. Manuf., 2021, vol. 42, p. 101999.

    CAS  Google Scholar 

  18. M. Ghaffari, A. Vahedi Nemani, M. Rafieazad, and A. Nasiri: Jom, 2019, vol. 71, pp. 4215–24.

    Article  CAS  Google Scholar 

  19. X. Wang, X. Gong, and K. Chou: Proc. Inst. Mech. Eng. Part B, 2017, vol. 231, pp. 1890–1903.

    Article  CAS  Google Scholar 

  20. G.P. Dinda, A.K. Dasgupta, and J. Mazumder: Mater. Sci. Eng. A, 2009, vol. 509, pp. 98–104.

    Article  Google Scholar 

  21. N.A. Kistler, A.R. Nassar, E.W. Reutzel, D.J. Corbin, and A.M. Beese: J. Laser Appl., 2017, vol. 29, p. 022005.

    Article  Google Scholar 

  22. J.S.K.E.W.R. Cory, D. Jamieson, Marissa C. Brennan, Todd J. Spurgeon, Stephen W. Brown: J. Laser Appl. https://doi.org/10.2351/7.0000534.

  23. M. Bambach, I. Sizova, F. Kies, and C. Haase: Addit. Manuf., 2021, vol. 47, p. 102269.

    CAS  Google Scholar 

  24. Z. Liu, B. He, T. Lyu, and Y. Zou: Jom, 2021, vol. 73, pp. 1804–08.

    Article  Google Scholar 

  25. Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, and J. Lin: Opt. Laser Technol., 2015, vol. 75, pp. 197–206.

    Article  CAS  Google Scholar 

  26. P. Rangaswamy, M.L. Griffith, M.B. Prime, T.M. Holden, R.B. Rogge, J.M. Edwards, and R.J. Sebring: Mater. Sci. Eng. A, 2005, vol. 399, pp. 72–83.

    Article  Google Scholar 

  27. L. Wang, S.D. Felicelli, and P. Pratt: Mater. Sci. Eng. A, 2008, vol. 496, pp. 234–41.

    Article  Google Scholar 

  28. R.J. Moat, A.J. Pinkerton, L. Li, P.J. Withers, and M. Preuss: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2288–98.

    Article  Google Scholar 

  29. N. Nadammal, S. Cabeza, T. Mishurova, T. Thiede, A. Kromm, C. Seyfert, L. Farahbod, C. Haberland, J.A. Schneider, P.D. Portella, and G. Bruno: Mater. Des., 2017, vol. 134, pp. 139–50.

    Article  CAS  Google Scholar 

  30. J. Hönnige, C.E. Seow, S. Ganguly, X. Xu, S. Cabeza, H. Coules, and S. Williams: Mater. Sci. Eng. A, 2020, https://doi.org/10.1016/j.msea.2020.140368.

    Article  Google Scholar 

  31. K. Kempen, L. Thijs, B. Vrancken, S. Buls, J. Van Humbeeck, and J.P. Kruth: 24th Int. SFF Symp. - An Addit. Manuf. Conf. SFF 2013, 2013, pp. 131–39.

  32. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  CAS  Google Scholar 

  33. A.H. Nickel, D.M. Barnett, and F.B. Prinz: Mater. Sci. Eng. A, 2001, vol. 317, pp. 59–64.

    Article  Google Scholar 

  34. E.R. Denlinger, J.C. Heigel, P. Michaleris, and T.A. Palmer: J. Mater. Process. Technol., 2015, vol. 215, pp. 123–31.

    Article  CAS  Google Scholar 

  35. B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pirling, M. Hofmann, and D.J. Jarvis: Mater. Des., 2016, vol. 89, pp. 559–67.

    Article  CAS  Google Scholar 

  36. C. Li, Z.Y. Liu, X.Y. Fang, and Y.B. Guo: Procedia CIRP, 2018, vol. 71, pp. 348–53.

    Article  Google Scholar 

  37. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, and W.E. King: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 6260–70.

    Article  Google Scholar 

  38. M.F. Zaeh and G. Branner: Prod. Eng., 2010, vol. 4, pp. 35–45.

    Article  Google Scholar 

  39. J.P. Kruth, J. Deckers, E. Yasa, and R. Wauthlé: Proc. Inst. Mech. Eng. Part B, 2012, vol. 226, pp. 980–91.

    Article  Google Scholar 

  40. T. Mukherjee, W. Zhang, and T. DebRoy: Comput. Mater. Sci., 2017, vol. 126, pp. 360–72.

    Article  CAS  Google Scholar 

  41. M. McMillan, M. Leary, and M. Brandt: Mater. Des., 2017, vol. 132, pp. 226–43.

    Article  CAS  Google Scholar 

  42. J. Wang, Y. Wang, and J. Shi: Int. J. Precis. Eng. Manuf., 2021, vol. 8, pp. 1181–96.

    Google Scholar 

  43. C. Carmignani, R. Mares, and G. Toselli: Comput. Methods Appl. Mech. Eng., 1999, vol. 179, pp. 197–214.

    Article  Google Scholar 

  44. N. Keller and V. Ploshikhin: 25th Annu. Int. Solid Free. Fabr. Symp. � An Addit. Manuf. Conf. SFF 2014, 2014, pp. 1229–37.

  45. P. Mercelis and J.P. Kruth: Rapid Prototyp. J., 2006, vol. 12, pp. 254–65.

    Article  Google Scholar 

  46. T. Simson, A. Emmel, A. Dwars, and J. Böhm: Addit. Manuf., 2017, vol. 17, pp. 183–89.

    CAS  Google Scholar 

  47. K. Shah, I.U. Haq, S.A. Shah, F.U. Khan, M.T. Khan, and S. Khan: Sci. World J., 2014, https://doi.org/10.1155/2014/841549.

    Article  Google Scholar 

  48. F. Lia, J. Park, J. Tressler, and R. Martukanitz: Addit. Manuf., 2017, vol. 18, pp. 31–39.

    CAS  Google Scholar 

  49. B. Kumar and S. Bag: Opt. Lasers Eng., 2019, vol. 122, pp. 209–24.

    Article  Google Scholar 

  50. B. Taljat, B. Radhakrishnan, and T. Zacharia: Mater. Sci. Eng. A, 1998, vol. 246, pp. 45–54.

    Article  Google Scholar 

  51. A.S. Agazhanov, D.A. Samoshkin, and Y.M. Kozlovskii: J. Phys. Conf. Ser., 2019, https://doi.org/10.1088/1742-6596/1382/1/012175.

    Article  Google Scholar 

  52. B. Kumar, S. Bag, S. Mahadevan, C.P. Paul, C.R. Das, and K.S. Bindra: CIRP J. Manuf. Sci. Technol., 2021, vol. 33, pp. 158–75.

    Article  Google Scholar 

  53. J.S. Lee, J.H. Gu, H.M. Jung, E.H. Kim, Y.G. Jung, and J.H. Lee: Mater. Today Proc., 2014, vol. 1, pp. 3–10.

    Article  Google Scholar 

  54. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051–62.

    Article  Google Scholar 

  55. Y. Lee, M. Nordin, S.S. Babu, and D.F. Farson: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1520–29.

    Article  Google Scholar 

  56. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser: Mater. Sci. Eng. A, 2009, vol. 513–514, pp. 311–18.

    Article  Google Scholar 

  57. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  58. R. Trivedi: J. Cryst. Growth, 1980, vol. 49, pp. 219–32.

    Article  CAS  Google Scholar 

  59. W. Wang, P.D. Lee, and M. McLean: Acta Mater., 2003, vol. 51, pp. 2971–87.

    Article  CAS  Google Scholar 

  60. K. Yuan, W. Guo, P. Li, Y. Zhang, X. Li, and X. Lin: Mech. Mater., 2019, vol. 135, pp. 13–25.

    Article  Google Scholar 

  61. G. Chen, C. Ren, X. Qin, and J. Li: Mater. Des., 2015, vol. 83, pp. 598–610.

    Article  CAS  Google Scholar 

  62. T. Singh and V.K. Gupta: Mech. Adv. Mater. Struct., 2014, vol. 21, pp. 384–92.

    Article  CAS  Google Scholar 

  63. X. Song, S. Feih, W. Zhai, C.N. Sun, F. Li, R. Maiti, J. Wei, Y. Yang, V. Oancea, L. Romano Brandt, and A.M. Korsunsky: Mater. Des., 2020, vol. 193, p. 108779.

    Article  Google Scholar 

  64. V. Manvatkar, A. De, and T. Debroy: J. Appl. Phys., 2007, https://doi.org/10.1063/1.4896751.

    Article  Google Scholar 

  65. V. Manvatkar, A. De, and T. DebRoy: Mater. Sci. Technol. (United Kingdom), 2015, vol. 31, pp. 924–30.

    Article  CAS  Google Scholar 

  66. D. Grange, J.D. Bartout, B. Macquaire, and C. Colin: Materialia, DOI:https://doi.org/10.1016/j.mtla.2020.100686.

  67. H. Qi, J. Mazumder, and H. Ki: J. Appl. Phys., DOI:https://doi.org/10.1063/1.2209807.

  68. X. He and J. Mazumder: J. Appl. Phys., 2007, https://doi.org/10.1063/1.2710780.

    Article  Google Scholar 

  69. C. Guévenoux, S. Hallais, A. Charles, E. Charkaluk, and A. Constantinescu: Opt. Laser Technol., 2020, vol. 128, p. 106218.

    Article  Google Scholar 

  70. G. Langelandsvik, O.M. Akselsen, T. Furu, and H.J. Roven: Materials (Basel), 2021, vol. 14, pp. 1–26.

    Article  Google Scholar 

  71. B. Bellón, A. Boukellal, T. Isensee, O.M. Wellborn, K.P. Trumble, M.J.M. Krane, M.S. Titus, D. Tourret, and J. LLorca: Acta Mater., 2021, https://doi.org/10.1016/j.actamat.2021.116686.

    Article  Google Scholar 

  72. X. Zhang, B. Mao, L. Mushongera, J. Kundin, and Y. Liao: Mater. Des., 2021, vol. 201, p. 109501.

    Article  CAS  Google Scholar 

  73. D. Guo, K. Yan, M.D. Callaghan, D. Daisenberger, M. Chatterton, J. Chen, A. Wisbey, and W. Mirihanage: Mater. Des., 2021, vol. 207, p. 109782.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Metallurgical Engineering and Materials Science of Indian Institute of Technology Bombay for providing the computational facility along with licensed ABAQUS® commercial software.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Nagamani Jaya, B. Thermal Stability and Residual Stresses in Additively Manufactured Single and Multi-material Systems. Metall Mater Trans A 54, 1808–1824 (2023). https://doi.org/10.1007/s11661-022-06928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06928-3

Navigation