Skip to main content

Advertisement

Log in

Improved Tensile Properties of Micro-grain Casting K447A Alloy

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Micro-grain K447A superalloy with grain refined to 54 μm and yield strength up to 1022 MPa has been successfully fabricated in this work, whose strength is 200 MPa higher than that of conventional casting K447A. Owing to the bimodal distribution of γ′, two dislocation mechanisms act simultaneously at the initial stage of plastic deformation. That is, dislocations cut γ′ with radius less than 100 nm but bypass γ′ over 100 nm. Based on the deformation mechanisms of γ′ with different sizes, a frequency-weighted precipitation strengthening calculation method has been proposed to predict the contribution of precipitation strengthening accurately. Yield strength predicted by this method is in good agreement with experimental results with maximum error of 4.0 pct. Strength calculation indicates that micro-grain casting process improves the yield strength mainly by increasing the volume fraction of γ′ from 34.2 to 51.6 pct and reducing the grain size from 5 mm to 54 μm, compared with the conventional one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.N. Li, X.F. Gong, C.S. Wang, Y.S. Wu, H.Y. Yu, H.J. Su, and L.Z. Zhou: Acta Metall. Sin. (Engl. Lett.), 2020, vol. 34, pp. 872–84.

    Article  Google Scholar 

  2. H.Y. Bor, C.N. Wei, R.R. Jeng, and P.Y. Ko: Mater. Chem. Phys., 2008, vol. 109, pp. 334–41.

    Article  CAS  Google Scholar 

  3. H.Y. Bor, C. Hsu, and C.N. Wei: Mater. Chem. Phys., 2004, vol. 84, pp. 284–90.

    Article  CAS  Google Scholar 

  4. L.F. Norris, J.R. Brinegar, and L. Rozenberg: Superalloys Proc. Int. Symp., 5th, 1984, pp. 23–32.

  5. P. Neil Agarwal and C.A. MacIntyre: SAE Trans., 1984, vol. 93, pp. 6–364.

    Google Scholar 

  6. H. Benson and M. Woulds: Superalloys Proc. Int. Symp., 5th, 1984, pp. 3–12.

  7. J.H. Liao, H.Y. Bor, C.G. Chao, and T.F. Liu: Mater. Trans., 2010, vol. 51, pp. 810–17.

    Article  CAS  Google Scholar 

  8. J.H. Liao, H.Y. Bor, C.G. Chao, and T.F. Liu: Mater. Trans., 2011, vol. 52, pp. 201–09.

    Article  CAS  Google Scholar 

  9. P.P. Hu, Q.D. Gai, Q. Li, and X. Tang: Mater. Sci. Forum, 2016, vol. 849, pp. 549–56.

    Article  Google Scholar 

  10. L. Liu, T.W. Huang, T.H. Xiong, A.M. Yang, Z.L. Zhao, R. Zhang, and J.S. Li: Superalloys 2004, Proc. Int. Symp., 10th, 2004, vol. 19. pp. 493–500.

  11. T.H. Xiong, A.M. Yang, Y.P. Guo, W. Liu, and L. Liu: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 13–7.

    Article  CAS  Google Scholar 

  12. C.N. Wei, H.Y. Bor, C.Y. Ma, and T.S. Lee: Mater. Chem. Phys., 2003, vol. 80, pp. 89–93.

    Article  CAS  Google Scholar 

  13. B.N. Du, J.X. Yang, C.Y. Cui, and X.F. Sun: Mater. Sci. Eng. A, 2015, vol. 623, pp. 59–67.

    Article  CAS  Google Scholar 

  14. Z.T. Gao, W. Guo, C.W. Zhang, and J.Q. Tan: Mater. Sci. Eng. A, 2017, vol. 682, pp. 156–63.

    Article  CAS  Google Scholar 

  15. J.H. Xu, H. Gruber, R. Boyd, S. Jiang, R.L. Peng, and J.J. Moverare: Materialia, 2020, vol. 10, p. 100657.

    Article  CAS  Google Scholar 

  16. M.R. Ahmadi, E. Povoden-Karadeniz, L. Whitmore, M. Stockinger, A. Falahati, and E. Kozeschnik: Mater. Sci. Eng. A, 2014, vol. 608, pp. 114–22.

    Article  CAS  Google Scholar 

  17. K.L. Hou, M. Wang, M.Q. Ou, H.Z. Li, X.C. Hao, Y.C. Ma, and K. Liu: J. Mater. Sci. Technol., 2021, vol. 68, pp. 40–52.

    Article  CAS  Google Scholar 

  18. B.D. Fu, K. Du, G.M. Han, C.Y. Cui, and J.X. Zhang: Mater. Lett., 2015, vol. 152, pp. 272–75.

    Article  CAS  Google Scholar 

  19. J. Xie, J.J. Yu, X.F. Sun, T. Jin, and Y.H. Yang: Acta Metall. Sin., 2015, vol. 51, pp. 943–50.

    CAS  Google Scholar 

  20. P. Zhang, Y. Yuan, Z.H. Gao, Y.F. Gu, J. Li, J.B. Yan, X.F. Gong, J.T. Lu, X.B. Shi, and B.Q. Fu: J. Alloys Compd., 2021, vol. 862, p. 158478.

    Article  CAS  Google Scholar 

  21. Z.W. Lian, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2008, vol. 489, pp. 227–33.

    Article  Google Scholar 

  22. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1588–603.

    Article  Google Scholar 

  23. L.M. Tan, Y.P. Li, W.K. Deng, Y. Liu, F. Liu, Y. Nie, and L. Jiang: J. Alloys Compd., 2019, vol. 804, pp. 322–30.

    Article  CAS  Google Scholar 

  24. C. Joseph, C. Persson, and M. Hörnqvist Colliander: Mater. Sci. Eng. A, 2017, vol. 679, pp. 520–30.

    Article  CAS  Google Scholar 

  25. A.J. Goodfellow: Metall. Mater. Trans. A, 2018, vol. 34, pp. 1793–808.

    CAS  Google Scholar 

  26. D. Raynor and J.M. Slicock: Met. Sci. J., 1970, vol. 4, pp. 121–30.

    Article  CAS  Google Scholar 

  27. A.J. Goodfellow, E.I. Galindo-Nava, C. Schwalbe, and H.J. Stone: Mater. Des., 2019, vol. 173, p. 107760.

    Article  CAS  Google Scholar 

  28. E.I. Galindo-Nava, L.D. Connor, and C.M.F. Rae: Acta Mater., 2015, vol. 98, pp. 377–90.

    Article  CAS  Google Scholar 

  29. A.J. Goodfellow, E.I. Galindo-Nava, K.A. Christofidou, N.G. Jones, C.D. Boyer, T.L. Martin, P.A.J. Bagot, M.C. Hardy, and H.J. Stone: Acta Mater., 2018, vol. 153, pp. 290–302.

    Article  CAS  Google Scholar 

  30. Q.H. Fang, L. Li, J. Li, H.Y. Wu, Z.W. Huang, B. Liu, Y. Liu, and P.K. Liaw: J. Mech. Phys. Solids, 2019, vol. 122, pp. 177–89.

    Article  CAS  Google Scholar 

  31. J.Y. Guédou, A.I. Epishin, T. Link, B. Fedelich, I.L. Svetlov, E.R. Golubovskiy, and J. Choné: MATEC Web Conf., 2014, vol. 14, p. 08003.

    Article  Google Scholar 

  32. I. Sulak, K. Obrtlik, and L. Celko: Kovove Mater., 2016, vol. 54, pp. 471–81.

    Article  CAS  Google Scholar 

  33. M.T. Kim, S.Y. Chang, and J.B. Won: Mater. Sci. Eng. A, 2006, vol. 441, pp. 126–34.

    Article  Google Scholar 

  34. T. Yang, Y.L. Zhao, Z.B. Jiao, J. Wei, and J.X. Cai: Science, 2018, vol. 362, pp. 933–37.

    Article  CAS  Google Scholar 

  35. K. Hou, M. Ou, M. Wang, X.C. Hao, Y.C. Ma, and K. Liu: Mater. Sci. Eng. A, 2021, vol. 820, p. 141588.

    Article  CAS  Google Scholar 

  36. N. Zhou, C. Shen, M.J. Mills, J. Li, and Y.Z. Wang: Acta Mater., 2011, vol. 59, pp. 3484–497.

    Article  CAS  Google Scholar 

  37. A. Vattré, B. Devincre, and A. Roos: Intermetallics, 2009, vol. 17, pp. 988–94.

    Article  Google Scholar 

  38. P. Zhang, Y. Yuan, J. Li, Y.F. Xu, X.L. Song, and G.X. Yang: Mater. Sci. Eng. A, 2017, vol. 702, pp. 343–49.

    Article  CAS  Google Scholar 

  39. F. Lu, S. Antonov, S. Lu, J.C. Zhang, L.F. Li, D. Wang, J. Zhang, and Q. Feng: Acta Mater., 2022, vol. 233, p. 117979.

    Article  CAS  Google Scholar 

  40. X.P. Tan, J.L. Liu, and T. Jin: Mater. Sci. Eng. A, 2013, vol. 580, pp. 21–35.

    Article  CAS  Google Scholar 

  41. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.

    Article  CAS  Google Scholar 

  42. U. Bayerlein and H.G. Sockel: Mater. Sci. Eng. A, 1991, vol. 141, pp. 179–87.

    Article  Google Scholar 

  43. K. Zhang, B. Holmedal, T. Mánik, and A. Saai: Int. J. Plast., 2019, vol. 114, pp. 144–60.

    Article  CAS  Google Scholar 

  44. Q. Zhu, C.J. Wang, K. Yang, G. Chen, H.Y. Qin, and P. Zhang: J. Mater. Sci. Technol., 2020, vol. 40, pp. 146–57.

    Article  CAS  Google Scholar 

  45. B. Clausen, T. Lorentzen, and T. Leffers: Acta Mater., 1998, vol. 46, pp. 3087–98.

    Article  CAS  Google Scholar 

  46. M. Yoshinao, O. Shouichi, H. Noboru, Y. Masayoshi, and S. Tomoo: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 656–64.

    Article  Google Scholar 

  47. H.A. Roth, C.L. Davis, and R.C. Thomson: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1329–35.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by Advanced High Temperature Structural Materials Laboratory in Beijing Institute of Aeronautical Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshan He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, X., Liu, R. et al. Improved Tensile Properties of Micro-grain Casting K447A Alloy. Metall Mater Trans A 54, 1710–1720 (2023). https://doi.org/10.1007/s11661-022-06894-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06894-w

Navigation