Skip to main content
Log in

Microstructure Distribution in 17-4 PH Martensitic Steel Produced by Selective Laser Melting

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, electron backscatter diffraction (EBSD) was applied to investigate the microstructure distribution within the selective-laser-melted 17-4 PH martensitic steel. The volume fraction of the δ-ferrite was found to decrease in the building direction. This effect was attributed to the decrease in the cooling rate, which promoted the δ-ferrite → austenite → α-martensite transformation sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Figure 2
Figure 3

References

  1. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133–64. https://doi.org/10.1179/1743280411Y.0000000014.

    Article  CAS  Google Scholar 

  2. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker: J. Mat. Sci. Technol., 2012, vol. 28, pp. 1–4. https://doi.org/10.1016/S1005-0302(12)60016-4.

    Article  CAS  Google Scholar 

  3. A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, and L. Bian: Int. J. Fatig., 2017, vol. 94, pp. 218–35. https://doi.org/10.1016/j.ijfatigue.2016.03.014.

    Article  CAS  Google Scholar 

  4. H.K. Rafi, D. Pal, N. Patil, T.L. Starr, and B.E. Stucker: J. Mater. Eng. Perform., 2014, vol. 23, pp. 4421–28. https://doi.org/10.1007/s11665-014-1226-y.

    Article  CAS  Google Scholar 

  5. T. LeBrun, T. Nakamoto, K. Horikawa, and H. Kobayashi: Mater. Des., 2015, vol. 81, pp. 44–53. https://doi.org/10.1016/j.matdes.2015.05.026.

    Article  CAS  Google Scholar 

  6. R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, R.A.R. Rashid, and M. Brandt: J. Mater. Proc. Technol., 2017, vol. 249, pp. 502–11. https://doi.org/10.1016/j.jmatprotec.2017.06.023.

    Article  CAS  Google Scholar 

  7. S. Pasebani, M. Ghayoor, S. Badwe, H. Irrinki, and S.V. Atre: Add. Manuf., 2018, vol. 22, pp. 127–37. https://doi.org/10.1016/j.addma.2018.05.011.

    Article  CAS  Google Scholar 

  8. T.-H. Hsu, Y.-J. Chang, C.-Y. Huang, H.-W. Yen, C.-P. Chen, K.-K. Jen, and A.-C. Yeh: J. Alloys Compd., 2019, vol. 803, pp. 30–41. https://doi.org/10.1016/j.jallcom.2019.06.289.

    Article  CAS  Google Scholar 

  9. X. Wang, Y. Liu, T. Shi, and Y. Wang: Mater. Sci. Eng. A, 2020, vol. 792, 139776. https://doi.org/10.1016/j.msea.2020.139776.

    Article  CAS  Google Scholar 

  10. M. Akita, Y. Uematsu, T. Kakiuchi, M. Nakajima, and R. Kawaguchi: Mater. Sci. Eng. A, 2016, vol. 666, pp. 19–26. https://doi.org/10.1016/j.msea.2016.04.042.

    Article  CAS  Google Scholar 

  11. Y. Sun, R.J. Hebert, and M. Aindow: Mater. Des., 2018, vol. 156, pp. 429–40. https://doi.org/10.1016/j.matdes.2018.07.015.

    Article  CAS  Google Scholar 

  12. S. Vunnam, A. Saboo, C. Sudbrack, and T.L. Starr: Add. Manuf., 2019, vol. 30, 100876. https://doi.org/10.1016/j.addma.2019.100876.

    Article  CAS  Google Scholar 

  13. P. Leo, S. D’Ostuni, P. Perulli, M.A.C. Sastre, A.I. Fernández-Abia, and J. Barreiro: Proc. Manuf., 2019, vol. 41, pp. 66–73. https://doi.org/10.1016/j.promfg.2019.07.030.

    Article  Google Scholar 

  14. L. Zai, C. Zhang, Y. Wang, W. Guo, D. Wellmann, X. Tong, and Y. Tian: Metals, 2020, vol. 10, pp. 255–80. https://doi.org/10.3390/met10020255.

    Article  CAS  Google Scholar 

  15. A.W. Wilson, J.D. Madison, and G. Spanos: Scripta Mater., 2001, vol. 45, pp. 1335–40. https://doi.org/10.1016/S1359-6462(01)01137-X.

    Article  CAS  Google Scholar 

  16. J. Wu, P.J. Wray, C.I. Garcia, M. Hua, and A.J. Deardo: ISIJ Int., 2005, vol. 45, pp. 254–62. https://doi.org/10.2355/isijinternational.45.254.

    Article  CAS  Google Scholar 

  17. M. Calcagnotto, D. Ponge, and D. Raabe: ISIJ Int., 2012, vol. 52, pp. 874–83. https://doi.org/10.2355/isijinternationl.52.874.

    Article  CAS  Google Scholar 

  18. J.-Y. Kang, S.-J. Park, and M.-B. Moon: Micros. Microanal., 2013, vol. 19, pp. 13–16. https://doi.org/10.1017/S1431927613012233.

    Article  CAS  Google Scholar 

  19. T. Martinez Ostormujof, R.R.P.P.R. Purohit, S. Breumier, N. Gey, M. Salib, and L. Germain: Mater. Character., 2022, vol. 184, p. 111638. https://doi.org/10.1016/j.matchar.2021.111638.

    Article  CAS  Google Scholar 

Download references

The authors declare that they have no conflict of interest. This work was performed using the equipment of the Joint Research Center “Technology and Materials” at Belgorod National Research University (financial support from the Ministry of science and higher education of the Russian Federation under the Agreement No. 075-15-2021-690, the unique project identifier RF 2296.61321X0030). The authors are also grateful to Alexander Kalinenko for help with EBSD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Mironov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 3464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskiy, I., Malopheyev, S., Zuiko, I. et al. Microstructure Distribution in 17-4 PH Martensitic Steel Produced by Selective Laser Melting. Metall Mater Trans A 53, 4143–4147 (2022). https://doi.org/10.1007/s11661-022-06829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06829-5

Navigation