Skip to main content
Log in

Quantification of Dynamic Softening Kinetics of Duplex Stainless Steel Using Constituent Flow Stresses With Inverse Analysis

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 23 November 2022

This article has been updated

Abstract

This paper presents a method for quantifying the dynamic softening kinetics of duplex stainless steel. An inverse analysis of the experimental results is performed through axial compression tests at deformation temperatures of 1050 °C, 1150 °C, and 1250 °C and strain rates of 0.1, 1, and 10 s−1 for SUS329J4L duplex stainless to determine the material parameters. Subsequently, regression analysis is performed to obtain the flow stresses and other material parameters, such as the activation energy. Decoupled flow equations of the austenite and ferrite phases, which combine the stresses of different phases, volume fractions, and parameter \(\lambda \) of the constituent stress relationship in the equilibrium state regime, are applied to calculate the flow stress of duplex stainless steel. The obtained material parameters are regarded as a dynamic part of the “material genome,” which may be used to explain the softening kinetics associated with plastic deformation and predict the microstructural evolutions during hot deformation processes such as hot forging or rolling. Electron backscatter diffraction analysis reveals heterogeneous microstructural evolutions, which show dominant occurrences of dynamic recrystallization in the austenite phase and dynamic recovery in the ferrite phase during hot compression at the above-mentioned deformation temperatures and strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

References

  1. M. Soltanpour and J. Yanagimoto: J. Mater. Process. Technol., 2012, vol. 2012(2), pp. 417–26. https://doi.org/10.1016/j.jmatprotec.2011.10.004.

    Article  CAS  Google Scholar 

  2. S. Ding, S.A. Khan, and J. Yanagimoto: J. Mater. Sci. Eng. A, 2018, vol. 728, pp. 133–43. https://doi.org/10.1016/j.msea.2018.05.025.

    Article  CAS  Google Scholar 

  3. H.-W. Park, K. Kim, H.-W. Park, and J. Yanagimoto: ISIJ Int., 2020, vol. 60(3), pp. 573–81. https://doi.org/10.2355/isijinternational.ISIJINT-2019-426.

    Article  CAS  Google Scholar 

  4. L. Duprez, B.C. De Cooman, and N. Akdut: Metall. Mater. Trans. A., 2002, vol. 33(7), pp. 1931–38. https://doi.org/10.1007/s11661-002-0026-4.

    Article  Google Scholar 

  5. S. Emami, T. Saeid, and R. Azari Khosroshahi: J. Alloys Compd., 2018, vol. 739, pp. 678–89. https://doi.org/10.1016/j.jallcom.2017.12.310.

    Article  CAS  Google Scholar 

  6. N. Kumar, S. Kumar, S.K. Rajput, and S.K. Nath: ISIJ Int., 2017, vol. 57(3), pp. 497–505. https://doi.org/10.2355/isijinternational.ISIJINT-2016-306.

    Article  CAS  Google Scholar 

  7. P. Cizek: Acta Mater., 2016, vol. 106, pp. 129–43. https://doi.org/10.1016/j.actamat.2016.01.012.

    Article  CAS  Google Scholar 

  8. K. Kim, H.-W. Park, S. Ding, H.-W. Park, and J. Yanagimoto: ISIJ Int., 2020, https://doi.org/10.2355/isijinternational.ISIJINT-2020-122.

    Article  Google Scholar 

  9. H. Farnoush, A. Momeni, K. Dehghani, J. Aghazadeh, and H. Keshmirib. Mohandesi: Mater. Des., 2010, vol. 30(1), pp. 220–26. https://doi.org/10.1016/j.matdes.2009.06.028.

    Article  CAS  Google Scholar 

  10. A. Yanagida, J. Liu, and J. Yanagimoto: Mater. Trans., 2003, vol. 44, pp. 2303–10. https://doi.org/10.2320/matertrans.44.2303.

    Article  CAS  Google Scholar 

  11. T. Senuma, H. Yada, Y. Matsumura, S. Hamauzu, and K. Nakajima: Tetsu-to-Hagane, 1984, vol. 70, pp. 1392–99. https://doi.org/10.2355/tetsutohagane1955.70.10_1392.

    Article  CAS  Google Scholar 

  12. S. Ankem, H. Margolin, C.A. Greene, B.W. Neuberger, and P.G. Oberson: Prog. Mater Sci., 2006, vol. 51, pp. 632–709. https://doi.org/10.1016/j.pmatsci.2005.10.003.

    Article  CAS  Google Scholar 

  13. G.I. Taylor: Plastic Strain in Metals, 1938, pp. 307–24.

  14. S. Sasaki, T. Katsumura, and H. Ota: Mater. Trans., 2022, vol. 62, pp. 177–84. https://doi.org/10.2320/matertrans.P-M2020863.

    Article  Google Scholar 

  15. L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665–72. https://doi.org/10.1016/1359-6454(95)00257-X.

    Article  Google Scholar 

  16. J.M. Cabrera, A. Mateo, L. Llanes, J.M. Prado, and M. Anglada: J. Mater. Process. Technol., 2003, vol. 143, pp. 321–25. https://doi.org/10.1016/S0924-0136(03)00434-5.

    Article  CAS  Google Scholar 

  17. S. Spigarelli, M. El Mehtedi, P. Ricci, and C. Mapelli: Mater. Sci. Eng. A, 2010, vol. 16, pp. 4218–28. https://doi.org/10.1016/j.msea.2010.03.029.

    Article  CAS  Google Scholar 

  18. A. Momeni and K. Dehghani: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1448–54. https://doi.org/10.1016/j.msea.2010.11.020.

    Article  CAS  Google Scholar 

  19. N. Haghdadi, P. Cizek, H. Beladi, and P.D. Hodgson: 2017, pp. 1209–37. https://doi.org/10.1080/14786435.2017.1293860

  20. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin: Acta Mater., 2009, vol. 57(9), pp. 2748–56. https://doi.org/10.1016/j.actamat.2009.02.033.

    Article  CAS  Google Scholar 

  21. A. Yanagida and J. Yanagimoto: J. Mater. Process. Technol., 2004, vol. 15(1–3), pp. 33–38. https://doi.org/10.1016/j.jmatprotec.2004.04.007.

    Article  CAS  Google Scholar 

  22. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater Sci., 2014, vol. 60, pp. 130–207. https://doi.org/10.1016/j.pmatsci.2013.09.002.

    Article  CAS  Google Scholar 

  23. S. Emami, T. Saeid, and R. AzariKhosroshahi: J. Alloys Compd., 2018, vol. 739, pp. 678–89. https://doi.org/10.1016/j.jallcom.2017.12.310.

    Article  CAS  Google Scholar 

  24. N. Kumar, S. Kumar, S.K. Rajput, and S.K. Nath: ISIJ Int., 2017, vol. 57(3), pp. 497–505. https://doi.org/10.2355/isijinternational.ISIJINT-2016-306.

    Article  CAS  Google Scholar 

  25. H.W. Park and J. Yanagimoto: Mater. Sci. Eng. A, 2013, vol. 567, pp. 29–37. https://doi.org/10.1016/j.msea.2012.12.061.

    Article  CAS  Google Scholar 

  26. H.W. Park, K. Shimojima, S. Sugiyama, H. Komine, and J. Yanagimoto: Mater. Sci. Eng. A, 2015, vol. 624, pp. 203–12. https://doi.org/10.1016/j.msea.2014.11.070.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyunghyun Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was not the corrected version. The publisher regrets the error.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Park, HW., Park, HW. et al. Quantification of Dynamic Softening Kinetics of Duplex Stainless Steel Using Constituent Flow Stresses With Inverse Analysis. Metall Mater Trans A 54, 423–438 (2023). https://doi.org/10.1007/s11661-022-06824-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06824-w

Navigation