Skip to main content

Advertisement

Log in

Effect of Tempering Temperature on the Microstructural Evolution and Properties of 800 MPa Grade Low-Carbon Bainite-Deposited Metals

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of carbides at prior austenite grain boundaries (PAGBs) and reversed austenite (RA) in the interdendritic zone (IDZ) on the impact toughness were investigated systematically for an 800 MPa grade low-carbon bainite-deposited metal. The results showed that M3C, M2C, and RA were generated in the deposited metals during the tempering process. In particular, the number and size of M3C precipitates generated on PAGBs increased when the temperature reached 570 °C, and coarse M3C precipitates on PAGBs became sites of crack initiation during the fracture process, which resulted in severe loss of toughness. In addition, a large amount of film-like RA was observed between laths in the IDZ when the tempering temperature reached 610 °C due to enrichment of alloying elements (Ni and Mn) in the IDZ. Austenite coordinated deformation and impeded crack propagation during the fracture process, and the microstructure of deposited metals tempered at 610 °C had typical layered structure. Therefore, the toughness of the deposited metals was restored due to the decrease in intergranular fracture and increase in the resistance of the microstructure to crack propagation when the tempering temperature reached 610 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.F. Lan, L.X. Du, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 611, p. 194.

    Article  CAS  Google Scholar 

  2. M. Gaojun, C. Rui, C. Cyril, L. Roland, G. Xili, J. Yong, and C. Jianhong: J. Mater. Process. Tech., 2018, vol. 262, p. 638.

    Article  Google Scholar 

  3. L. Lan, C. Qiu, D. Zhao, X. Gao, and L. Du: Mater. Sci. Eng. A, 2011, vol. 529, p. 192.

    Article  CAS  Google Scholar 

  4. J. Liu, J. Sun, S. Wei, S. Lu, Cryst., 2021, vol. 11(6), p. 709.

  5. J. Liu, J. Sun, S. Wei, and S. Lu: Mater. Sci. Eng. A, 2022, vol. 840, 142893.

    Article  CAS  Google Scholar 

  6. R.O. Ritchie, Nat. Mater., 2011, vol. 10(11), p. 817.

  7. J. Sun and S. Lu: Mater. Sci. Eng. A, 2021, vol. 806, 140758.

    Article  CAS  Google Scholar 

  8. J. Sun, S. Wei, and S. Lu: Mater. Sci. Eng. A, 2020, vol. 772, 138739.

    Article  CAS  Google Scholar 

  9. J.C.F. Jorge, J.L.D. Monteiro, A.J.D.C. Gomes, I.d.S. Bott, L.F.G.D. Souza, M.C. Mendes, L.S. Araújo, J. Mater. Res. Technol., 2019, vol. 8(1), p. 561.

  10. H. Yousefi Azad, S.H. Mousavi Anijdan, H. Najafi, Mater. Sci. Eng. A, 2020, vol. 793, p. 139810.

  11. A. Krolicka, K. Radwanski, A. Janik, P. Kustron, A. Ambroziak, Mater., 2020, vol. 13(21), p. 4841.

  12. R. Feng, S. Li, Z. Li, and L. Tian: Mater. Sci. Eng. A, 2012, vol. 558, p. 205.

    Article  CAS  Google Scholar 

  13. Miller, Mike, K., Babu, Sudarsanam, Suresh, Peet, Mathew, J., Bhadeshia, Metall. Mater. Trans A, 2017

  14. Y.W. Chen, B.M. Huang, Y.T. Tsai, S.P. Tsai, C.Y. Chen, and J.R. Yang: Mater. Charact., 2017, vol. 131, p. 298.

    Article  CAS  Google Scholar 

  15. A.S. Aloraier, S. Joshi, J.W.H. Price, K. Alawadhi, Metall. Mater. Trans. A, 2014, vol. 45(4), p. 2030.

  16. J.C.F. Jorge, L.F.G. Souza, J.M.A. Rebello, Mater. Charact., 2001, vol. 47(3), p. 195.

  17. S.S. Babu, H. Bhadeshia, Mater. Sci. Technol.,1990, vol. 6(10), p. 1005.

  18. S.D. Bhole, J.B. Nemade, L. Collins, C. Liu, J. Mater. Process. Tech., 2006, vol, 173(1), p. 92.

  19. S. Khodir, T. Shibayanagi, M. Takahashi, H. Abdel-Aleem, and K. Ikeuchi: Mater. Des., 2014, vol. 60, p. 391.

    Article  CAS  Google Scholar 

  20. E. Keehan, L. Karlsson, H.O. Andren, Sci. Technol. Weld. Join., 2006, vol. 11(1), p. 1.

  21. B. Y. Kang, H. J. Kim, S. K. Hwang, ISIJ Int., 2000, vol. 40(12), p. 1237.

  22. W.W. Bose-Filho, A.L.M. Carvalho, M. Strangwood, Mater. Charact., 2007, vol. 58(1), p. 29.

  23. J. Li, C. Zhang, B. Jiang, L. Zhou, and Y. Liu: J. Alloys Compd., 2016, vol. 685, p. 248.

    Article  CAS  Google Scholar 

  24. Y. Li and X. Wang: Mater. Sci. Eng., 2021, vol. 809, 140924.

    Article  CAS  Google Scholar 

  25. H. Wang, D. Hong, L. Hou, P. Ou, Z. Wang, L. Shen, and H. Zhao: Mater. Chem. Phys., 2020, vol. 255, 123554.

    Article  CAS  Google Scholar 

  26. E. De Moor, D.K. Matlock, J.G. Speer, M.J. Merwin, Scr. Mater., 2011, vol. 64(2), p. 185.

  27. J.I. Kim, C.K. Syn, J.W. Morris Jr, Metall. Mater. Trans A, 1983, vol. 14A(1), p. 93.

  28. G.T. 25774.1–2010, Standardization Administration, 2010, p. 12.

  29. Y.X. Wu, W.W. Sun, M.J. Styles, A. Arlazarov, and C.R. Hutchinson: Acta Mater., 2018, vol. 159, p. 209.

    Article  CAS  Google Scholar 

  30. H. Bhadeshia, J.W. Christian, Metall. Mater. Trans A, 1990, vol. 21(4), p. 767.

  31. Z. Dai, H. Chen, R. Ding, Q. Lu, C. Zhang, Z. Yang, and S. van der Zwaag: Mater. Sci. Eng. R Rep., 2021, vol. 143, 100590.

    Article  Google Scholar 

  32. K. Yang, Y. Li, Z. Hong, S. Du, T. Ma, S. Liu, and X. Jin: Mater. Sci. Eng. A, 2021, vol. 820, 141517.

    Article  CAS  Google Scholar 

  33. W. You, W. Xu, B. Bai, H. Fang, Mater. Sci. Eng. A, 2006, vol. 419(1), p. 276.

  34. X.L. Wang, X.M. Wang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2016, vol. 649, p. 282.

    Article  CAS  Google Scholar 

  35. N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2018, vol. 145, p. 154.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of Liaoning Province (2019JH3/30100039), Innovation Project of Shenyang National Laboratory for Materials Science (SYNL-2020), National Natural Science Foundation of China (52101060) and the major R&D Project of Liaoning Province (2020JH1/10100001). Thanks to Dr. Xie Wenlong for his help in the drawing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanping Lu.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wei, S., Sun, J. et al. Effect of Tempering Temperature on the Microstructural Evolution and Properties of 800 MPa Grade Low-Carbon Bainite-Deposited Metals. Metall Mater Trans A 53, 4272–4282 (2022). https://doi.org/10.1007/s11661-022-06822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06822-y

Navigation