Skip to main content

Advertisement

Log in

Tensile Strength and Fracture Morphology of Fe/Al Solid-State Bonding Interface Obtained by Forge Welding: Effect of Oxide Scale and Estimation of the Bond Strength of Each Phase

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recently proposed high-strength iron (Fe)/aluminum (Al) spot-forged joints, in which the thickness of the reaction layer is virtually intermetallic compound (IMC)-free in the mesoscopic region, are overlapping sheet materials for which the tensile strength of the interface is unknown. Thus, to measure the tensile strength of the interface, a direct tensile test was performed by sandwiching 1-mm-thick SPCC sheet material with A2024T4 extruded billets to create a forged member. Two types of SPCC were used, i.e., one polished with SiC #1000 abrasive and the other coated with approximately 2-μm-thick oxide scale to probe the effect of the contaminant layer on the strength; both displayed bonded interface (BI) fracture, with tensile strengths of 250 and 175 MPa, respectively. This welding method, which creates a newly formed surface, can be used for relatively high-strength bonding even in the presence of oxide scale. Fracture surface observations and chemical composition analyses revealed the fracture morphology of these materials. The fracture interface was roughly divided into two phases, Al matrix and Fe/Al, for the abrasive material, and three phases, Fe/Fe–O in addition to the two phases for the oxide scale-coated material. Only the Al matrix fracture was a ductile fracture surface, while the others were relatively brittle fracture surfaces. The area fraction of each fracture interface was determined by binarization, and the bond strength of each of phase was estimated according to the composite law assumed at the strain corresponding to the Fe/Al interface fracture. The tensile strength potential of a sound Fe/Al BI was estimated to exceed 339 MPa. The Vickers hardness of each material before and after welding was determined along with the microstructural changes; the hardness of SPCC increased significantly due to work hardening, while that of A2024T4 decreased due to thermal effects. The joint efficiency based on the A2024 member strength after welding was approximately 74 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Ohhama, T. Miyahara, M. Sayama, T. Hata, T. Kobayashi and T. Yahaba: SAE Technical Paper, 2013, 2013-01-0372

  2. T. Gendo, K. Nishiguchi, and M. Asakawa: J. Jpn. Inst. Metals, 2006, vol. 70, pp. 870–73.

    Article  CAS  Google Scholar 

  3. M. Alimadadi, M. Mahmoudiniya, M. Goodarzi, and S.M.A. Boutorabi: J. Adv. Join. Process., 2022, vol. 5, p. 100116.

    Article  Google Scholar 

  4. N. Takeoka, T. Tsuchida, T. Matsuda, T. Ogura, R. Ohashi, and A. Hirose: J. Adv. Join. Process., 2022, vol. 5, p. 100112.

    Article  Google Scholar 

  5. Y. Nakazawa: J. JILM, 2022, vol. 72, pp. 31–39.

    Article  Google Scholar 

  6. T. Kobayashi, T. Iwase, and K. Maeda: KOBE Steel Eng. Rep., 2018, vol. 67, pp. 98–103.

    Google Scholar 

  7. K. Martinsen, S.J. Hu, and B.E. Carlson: CIRP Ann. Manuf. Technol., 2015, vol. 64, pp. 679–99.

    Article  Google Scholar 

  8. J. Li, S. Muraishi, and S. Kumai: Mater. Trans., 2021, vol. 62, pp. 1184–93.

    Article  CAS  Google Scholar 

  9. N. Kohlhorst, A. Kapil, Z. Chen, A. Vivek, T. Lee, J.C. Zhao, and G. Daehn: Metall. Mater. Trans. A, 2021, vol. 52, pp. 2795–2810.

    Article  CAS  Google Scholar 

  10. S. Zhang, K. Gao, S.T. Hong, H. Ahn, Y. Choi, S. Lee, and H.N. Han: J. Mater. Res. Technol., 2021, vol. 20, pp. 271–82.

    Article  Google Scholar 

  11. M. Du, W. Wang, X. Zhang, and J. Niu: Mater. Sci. Eng. A, 2022, vol. 20, p. 143746.

    Article  Google Scholar 

  12. Y. Hu, Y. Zhang, G. Mi, C. Wang, W. Zhang, and Z. Zhang: J. Mater. Res. Technol., 2021, vol. 15, pp. 1896–1904.

    Article  CAS  Google Scholar 

  13. H.S. Furuya, Y.T. Sato, Y.S. Sato, H. Kokawa, and Y. Tatsumi: Metall. Mater. Trans. A, 2018, vol. 49, pp. 527–36.

    Article  CAS  Google Scholar 

  14. H. Yamagishi, S. Kakiuchi, and M. Sato: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4659–68.

    Article  Google Scholar 

  15. H. Yamagishi, M. Sato, and K. Kakiuchi: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2154–62.

    Article  Google Scholar 

  16. H. Yamagishi, Pat./Jan./PCT/JP2021/003018.

  17. H. Yamagishi: Mater. Lett., 2020, vol. 278, 128412.

    Article  CAS  Google Scholar 

  18. H. Yamagishi: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 741–52.

    Article  Google Scholar 

  19. H. Yamagishi: Mater. Lett., 2021, vol. 279, 130080.

    Article  Google Scholar 

  20. H. Yamagishi: Mater. Trans., 2021, vol. 62, pp. 1576–82.

    Article  CAS  Google Scholar 

  21. H. Yamagishi: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 264–76.

    Article  Google Scholar 

  22. Welding Handbook Committee, Other Welding Processes, in: R.L O'Brien (Eds), Welding handbook vol. 2, eighth ed., American Welding Society, FL,1991, pp. 917–18.

  23. https://www.jfe-steel.co.jp/products/koukan/img/pdf/seizoukoutei_03.pdf/. Accessed 27 May 2022

  24. N. Wang, T. Yamaguchi, and K. Nishio: J. Jpn. Inst. Met. Mater., 2013, vol. 77, pp. 259–67.

    Article  CAS  Google Scholar 

  25. E. Fereiduni, M. Movahedi, A.H. Kokabi, and H. Najafi: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1744–58.

    Article  Google Scholar 

  26. Y. Huang, L. Wan, X. Si, T. Huang, X. Meng, and Y. Xie: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 295–99.

    Article  Google Scholar 

  27. Y. Su, X. Hua, and Y. Wu: Mater. Sci. Eng. A, 2013, vol. 578, pp. 340–45.

    Article  CAS  Google Scholar 

  28. Q.M. Nguyen and S.C. Huang: Materials, 2015, vol. 8, pp. 8246–54.

    Article  Google Scholar 

  29. J. Yang, Y. Li, H. Zhang, W. Guo, D. Weckman, and N. Zhou: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5149–57.

    Article  Google Scholar 

  30. J. Sun, Q. Yan, Z. Hi, and J. Huang: Mater. Des., 2016, vol. 90, pp. 468–77.

    Article  CAS  Google Scholar 

  31. A. Sato, Y. Liu, T. Yasui, S. Yamaguchi and K. Hirosawa: Preprints of the National Meeting of JWS, vo.110, 2022, pp. 76–77.

  32. S. Tomida, T. Nagae, and K. Nakata: Proc. Novel Mater., 2005, vol. 5, pp. 313–16.

    Google Scholar 

  33. Materials Strength Committee: Material strength, The Society of Materials Science Japan, Kyoto, 1994, p. 4.

    Google Scholar 

  34. N. Hasegawa, J. Arai, and T. Tanaka: J. Soc. Mater. Sci Jpn., 1990, vol. 39, pp. 859–63.

    Article  Google Scholar 

  35. J.R. Davis: Aluminum and Aluminum Alloys, ASM International, OH, 1993, p. 71.

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP20K05110.

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Yamagishi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagishi, H. Tensile Strength and Fracture Morphology of Fe/Al Solid-State Bonding Interface Obtained by Forge Welding: Effect of Oxide Scale and Estimation of the Bond Strength of Each Phase. Metall Mater Trans A 53, 4064–4080 (2022). https://doi.org/10.1007/s11661-022-06816-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06816-w

Navigation