Skip to main content

Advertisement

Log in

Influence of Ni Addition on the Microstructure and Mechanical Properties of 3.5Mn Medium-Mn Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of Ni addition on the microstructure evolution and mechanical properties of Fe–0.2C–3.5Mn medium Mn steel after intercritical annealing (IA) is investigated in this study. It is found that the Ni addition refines the grains and increases the retained austenite (RA) volume fraction significantly. Moreover, due to the partitioning behavior of Ni between ferrite and austenite during IA, the mechanical stability of RA is greatly improved, which effectively enhances the combination of tensile strength and elongation of 3.5Mn steel. The product of the ultimate tensile strength and total elongation (UTS × TE) of 3.5Mn–1Ni steel can reach 42.5 GPa pct after IA at 660 °C for 6 hours, which is better than the UTS × TE values of steels containing 3.5–7 wt. pct Mn. The nanoindentation analysis further confirms the highly favorable effect of Ni addition on austenite stability and its mechanical responses, which is helpful for the improvement in both the strength and plasticity of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Wang, J. Hu, and R.D.K. Misra: Mater. Sci. Eng. A, 2019, vol. 753, pp. 99–108. https://doi.org/10.1016/j.msea.2019.03.021.

    Article  CAS  Google Scholar 

  2. T. Kang, Z. Zhao, F. Li, L. Zhang, and X. Hou: Mater. Res. Express, 2021, vol. 8, p. 086517. https://doi.org/10.1088/2053-1591/ac1d19.

    Article  CAS  Google Scholar 

  3. Y. Wang, M. Zhang, Q. Cen, W. Wang, and X. Sun: Mater. Sci. Eng. A, 2022, vol. 839, p. 142849. https://doi.org/10.1016/j.msea.2022.142849.

    Article  CAS  Google Scholar 

  4. Y. Zou, H. Ding, Y. Zhang, and Z. Tang: Int. J. Plast., 2022, vol. 151, p. 103212. https://doi.org/10.1016/j.ijplas.2022.103212.

    Article  CAS  Google Scholar 

  5. X. Zhang, R. Teng, T. Liu, Y. Shi, Z. Lv, Q. Zhou, X. Wang, Y. Wang, H. Liu, and Z. Xing: Mater. Charact., 2022, vol. 184, p. 111661. https://doi.org/10.1016/j.matchar.2021.111661.

    Article  CAS  Google Scholar 

  6. X. Li, R. Song, N. Zhou, and J. Li: Scr. Mater., 2018, vol. 154, pp. 30–33. https://doi.org/10.1016/j.scriptamat.2018.05.016.

    Article  CAS  Google Scholar 

  7. Z. Xu, X. Shen, T. Allam, W. Song, and W. Bleck: Mater. Sci. Eng. A, 2022, vol. 829, p. 142115. https://doi.org/10.1016/j.msea.2021.142115.

    Article  CAS  Google Scholar 

  8. Z.Z. Zhao, J.H. Liang, A.M. Zhao, J.T. Liang, D. Tang, and Y.P. Gao: J. Alloy. Compd., 2017, vol. 691, pp. 51–59. https://doi.org/10.1016/j.jallcom.2016.08.093.

    Article  CAS  Google Scholar 

  9. D.T. Pierce, D.R. Coughlin, K.D. Clarke, E. De Moor, J. Poplawsky, D.L. Williamson, B. Mazumder, J.G. Speer, A. Hood, and A.J. Clarke: Acta Mater., 2018, vol. 151, pp. 454–69. https://doi.org/10.1016/j.actamat.2018.03.007.

    Article  CAS  Google Scholar 

  10. Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, and H. Ding: Mater. Sci. Eng. A, 2016, vol. 673, pp. 63–72. https://doi.org/10.1016/j.msea.2016.07.023.

    Article  CAS  Google Scholar 

  11. B. Zhang, X. Zhang, and H. Liu: Mater. Sci. Eng. A, 2020, vol. 793, 139289. https://doi.org/10.1016/j.msea.2020.139289.

    Article  CAS  Google Scholar 

  12. T. Allam, X. Guo, S. Sevsek, M. Lipińska-Chwałek, A. Hamada, E. Ahmed, and W. Bleck: Metals, 2019, vol. 9, p. 705. https://doi.org/10.3390/met9060705.

    Article  CAS  Google Scholar 

  13. S. Yan, T. Liang, J. Chen, T. Li, and X. Liu: Mater. Sci. Eng. A, 2019, vol. 746, pp. 73–81. https://doi.org/10.1016/j.msea.2019.01.014.

    Article  CAS  Google Scholar 

  14. H. Kong and C. Liu: Technologies, 2018, vol. 6, p. 36. https://doi.org/10.3390/technologies6010036.

    Article  Google Scholar 

  15. Z. Xu, J. Li, X. Shen, T. Allam, S. Richter, W. Song, and W. Bleck: Metals, 2021, vol. 11, p. 1888. https://doi.org/10.3390/met11121888.

    Article  CAS  Google Scholar 

  16. Z. Xu, X. Shen, T. Allam, W. Song, and W. Bleck: J. Mater. Res. Technol, 2022, vol. 17, pp. 2601–613. https://doi.org/10.1016/j.jmrt.2022.02.008.

    Article  CAS  Google Scholar 

  17. C. Tian, H. Guo, B. Hu, M. Enomoto, and C. Shang: Mater. Sci. Eng. A, 2021, vol. 810, p. 141009. https://doi.org/10.1016/j.msea.2021.141009.

    Article  CAS  Google Scholar 

  18. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia: Acta Mater., 2016, vol. 104, pp. 72–83. https://doi.org/10.1016/j.actamat.2015.11.032.

    Article  CAS  Google Scholar 

  19. Y. Wang, Q. Cen, W. Wang, and M. Zhang: Trans. Indian Inst. Met., 2022, https://doi.org/10.1007/s12666-022-02635-0.

    Article  Google Scholar 

  20. Q. Lai, M. Gouné, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz, and Y. Bréchet: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3375–386. https://doi.org/10.1007/s11661-016-3547-y.

    Article  CAS  Google Scholar 

  21. L. Cheng, A. Btttger, T.H. Keijser, and E.J. Mittemeijer: Scripta Metall. Mater., 1990, vol. 24, pp. 509–14. https://doi.org/10.1016/0956-716X(90)90192-J.

    Article  CAS  Google Scholar 

  22. W. Zhan, L.Q. Cao, J. Hu, W.Q. Cao, J. Li, and H. Dong: J. Iron. Steel Res. Int., 2014, vol. 21, pp. 551–58. https://doi.org/10.1016/S1006-706X(14)60086-8.

    Article  CAS  Google Scholar 

  23. H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, C. Wang, J. Li, and H. Dong: Mater. Sci. Eng. A, 2012, vol. 532, pp. 435–42. https://doi.org/10.1016/j.msea.2011.11.009.

    Article  CAS  Google Scholar 

  24. J.N. Huang, Z.Y. Tang, H. Ding, H. Zhang, L.L. Bi, and R.D.K. Misra: Mater. Sci. Eng. A., 2019, vol. 764, p. 138231. https://doi.org/10.1016/j.msea.2019.138231.

    Article  CAS  Google Scholar 

  25. E.D. Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, and S.B. Lee: ISIJ Int., 2011, vol. 51, pp. 137–44. https://doi.org/10.2355/isijinternational.51.137.

    Article  Google Scholar 

  26. A. Grajcar, A. Kilarski, and A. Kozlowska: Metals, 2018, vol. 8, p. 929. https://doi.org/10.3390/met8110929.

    Article  CAS  Google Scholar 

  27. D. Han, Y. Xu, J. Zhang, F. Peng, and W. Sun: Mater. Sci. Eng. A., 2021, vol. 821, p. 141625. https://doi.org/10.1016/j.msea.2021.141625.

    Article  CAS  Google Scholar 

  28. S. Yu, L.X. Du, J. Hu, and R.D.K. Misra: Mater. Sci. Eng. A, 2018, vol. 731, pp. 149–55. https://doi.org/10.1016/j.msea.2018.06.020.

    Article  CAS  Google Scholar 

  29. L. Fan, S. Li, Y. Zhao, L. Jia, and J. He: Ironmak. Steelmak., 2019, vol. 47, pp. 865–72. https://doi.org/10.1080/03019233.2019.1627806.

    Article  CAS  Google Scholar 

  30. W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6661–666. https://doi.org/10.1016/j.msea.2011.05.039.

    Article  CAS  Google Scholar 

  31. S. Liu, Z. Xiong, H. Guo, C. Shang, and R.D.K. Misra: Acta Mater., 2017, vol. 124, pp. 159–72. https://doi.org/10.1016/j.actamat.2016.10.067.

    Article  CAS  Google Scholar 

  32. B. Sun, F. Fazeli, C. Scott, B. Guo, C. Aranas, X. Chu, M. Jahazi, and S. Yue: Mater. Sci. Eng. A, 2018, vol. 729, pp. 496–507. https://doi.org/10.1016/j.msea.2018.04.115.

    Article  CAS  Google Scholar 

  33. T. Li, S. Yan, and X. Liu: Mater. Lett., 2021, vol. 301, p. 130249. https://doi.org/10.1016/j.matlet.2021.130249.

    Article  CAS  Google Scholar 

  34. B.K. Sahoo, V.C. Srivastava, A.K. Chandan, H.S. Chhabra, and S. Ghosh Chowdhury: Mater. Sci. Eng. A, 2021, vol. 824, p. 141852. https://doi.org/10.1016/j.msea.2021.141852.

    Article  CAS  Google Scholar 

  35. S. Ayenampudi, C. Celada-Casero, Z. Arechabaleta, M. Arribas, A. Arlazarov, J. Sietsma, and M.J. Santofimia: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 1321–335. https://doi.org/10.1007/s11661-021-06144-5.

    Article  CAS  Google Scholar 

  36. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A, 1989, vol. 113, pp. 1–41. https://doi.org/10.1016/0921-5093(89)90290-6.

    Article  Google Scholar 

  37. Z.H. Cai, H. Ding, X. Xue, J. Jiang, Q.B. Xin, and R.D.K. Misra: Scr. Mater., 2013, vol. 68, pp. 865–68. https://doi.org/10.1016/j.scriptamat.2013.02.010.

    Article  CAS  Google Scholar 

  38. X. Sun, M. Zhang, Y. Wang, Y. Jiang, Y. Song, and N. Ge: Mater. Sci. Eng. A, 2019, vol. 764, p. 138202. https://doi.org/10.1016/j.msea.2019.138202.

    Article  CAS  Google Scholar 

  39. S. Lee and B.C. De Cooman: Steel Res. Int., 2015, vol. 86, pp. 1170–178. https://doi.org/10.1002/srin.201500038.

    Article  CAS  Google Scholar 

  40. C. Zheng, L. Li, W. Yang, and Z. Sun: Mater. Sci. Eng. A, 2014, vol. 617, pp. 31–8. https://doi.org/10.1016/j.msea.2014.08.050.

    Article  CAS  Google Scholar 

  41. T.H. Ahn, C.S. Oh, K. Lee, E.P. George, and H.N. Han: J. Mater. Res., 2011, vol. 27, pp. 39–44. https://doi.org/10.1557/jmr.2011.208.

    Article  CAS  Google Scholar 

  42. B.B. He, Z.Y. Liang, and M.X. Huang: Scr. Mater., 2018, vol. 150, pp. 134–38. https://doi.org/10.1016/j.scriptamat.2018.03.015.

    Article  CAS  Google Scholar 

  43. B.B. He and S. Pan: Mater Charact, 2021, vol. 171, p. 110745. https://doi.org/10.1016/j.matchar.2020.110745.

    Article  CAS  Google Scholar 

  44. S. Shim, H. Bei, E.P. George, and G.M. Pharr: Scr. Mater., 2008, vol. 59, pp. 1095–098. https://doi.org/10.1016/j.scriptamat.2008.07.026.

    Article  CAS  Google Scholar 

  45. F. Lani, Q. Furnémont, T. Van Rompaey, F. Delannay, P.J. Jacques, and T. Pardoen: Acta Mater., 2007, vol. 55, pp. 3695–705. https://doi.org/10.1016/j.actamat.2007.02.015.

    Article  CAS  Google Scholar 

  46. Y. Wang, Z. Ma, R. Song, S. Zhao, Z. Zhang, and W. Huo: Mater. Lett., 2020, vol. 258, p. 126796. https://doi.org/10.1016/j.matlet.2019.126796.

    Article  CAS  Google Scholar 

  47. Y. Kim, T.H. Ahn, D.W. Suh, and H.N. Han: Scr. Mater., 2015, vol. 104, pp. 13–6. https://doi.org/10.1016/j.scriptamat.2015.03.014.

    Article  CAS  Google Scholar 

  48. B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, and H. Dong: Scr. Mater., 2013, vol. 69, pp. 215–18. https://doi.org/10.1016/j.scriptamat.2013.03.030.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (2017YFB0304402).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, Q., Wang, W., Zhang, B. et al. Influence of Ni Addition on the Microstructure and Mechanical Properties of 3.5Mn Medium-Mn Steel. Metall Mater Trans A 53, 4034–4046 (2022). https://doi.org/10.1007/s11661-022-06808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06808-w

Navigation