Skip to main content
Log in

Phase Transformation Temperatures, γγ′ Lattice Parameter Misfit, and γ′ Precipitate Morphology in Co–Ti–V Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the context of developing tungsten free cobalt alloys, the physical metallurgical properties of γ′ precipitate strengthened Co–Ti–V alloys were investigated. In this study, few alloys were cast and heat treated to study systematic effects on the properties. The addition of V to the Co–Ti system decreases γ′ solvus temperature, whereas it increases solidus temperature. The γγ′ lattice parameter misfit decreases with V addition. The γ′ precipitates have cuboidal with round corners morphology, and the extent of roundedness of corners increases with V addition. Density functional theory calculations were performed to understand the experimental observation of phase transformation temperatures, lattice misfit, and γ′ precipitate morphology. The calculations indicate that magnitude of the heat of formation of Co3(Ti,V) in the L12 crystal structure decreases with V addition. The γγ′ interfacial energy at 0 K is predicted to increase with V addition to the Co–Ti system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki: TMS JOM, 2010, vol. 62, pp. 58–63.

    Article  CAS  Google Scholar 

  2. D.L. Douglass, V.S. Bhide, and E. Vineberg: Oxid. Met., 1981, vol. 16, pp. 29–79. https://doi.org/10.1007/BF00603744.

    Article  CAS  Google Scholar 

  3. D. Coutsouradis, A. Davin, and M. Lamberigts: Mater. Sci. Eng., 1987, vol. 88, pp. 11–19. https://doi.org/10.1016/0025-5416(87)90061-9.

    Article  CAS  Google Scholar 

  4. A.M. Beltran: Cobalt based alloys, in Superalloys, 2nd ed., C.T. Sims, N. Stoloff, and W.C. Hagel, eds., Wiley, New York, 1987, pp. 135–64.

    Google Scholar 

  5. A.V. Davydov, U.R. Kattner, D. Josell, J.E. Blendell, R.M. Waterstrat, A.J. Shapiro, and W.J. Boettinger: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2175–86. https://doi.org/10.1007/s11661-001-0193-8.

    Article  CAS  Google Scholar 

  6. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91. https://doi.org/10.1126/science.1121738.

    Article  CAS  Google Scholar 

  7. S. Kobayashi, Y. Tsukamoto, T. Takasugi, H. Chinen, T. Omori, K. Ishida, and S. Zaefferer: Intermetallics, 2009, vol. 17, pp. 1085–89. https://doi.org/10.1016/j.intermet.2009.05.009.

    Article  CAS  Google Scholar 

  8. T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, and K. Ishida: Intermetallics, 2013, vol. 32, pp. 274–83. https://doi.org/10.1016/j.intermet.2012.07.033.

    Article  CAS  Google Scholar 

  9. C.H. Zenk, S. Neumeier, H.J. Stone, and M. Göken: Intermetallics, 2014, vol. 55, pp. 28–39. https://doi.org/10.1016/j.intermet.2014.07.006.

    Article  CAS  Google Scholar 

  10. H.J. Im, S.K. Makineni, B. Gault, F. Stein, D. Raabe, and P.-P. Choi: Scripta Mater., 2018, vol. 154, pp. 159–62. https://doi.org/10.1016/j.scriptamat.2018.05.041.

    Article  CAS  Google Scholar 

  11. C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, and M. Göken: Acta Mater., 2017, vol. 135, pp. 244–51. https://doi.org/10.1016/j.actamat.2017.06.024.

    Article  CAS  Google Scholar 

  12. K.V. Vamsi, K.N. Goswami, K.S. Vinay, S.K. Verma, R. Balamuralikrishnan, N. Das, D. Banerjee, and S. Karthikeyan: MATEC Web Conf., 2014, vol. 14, p. 17007. https://doi.org/10.1051/matecconf/20141417007.

    Article  Google Scholar 

  13. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, New York, 2006.

    Book  Google Scholar 

  14. Vanadium Cubic space group: Im-3m ICDD: 00-022-1058, Natl. Bur. Stand. (U.S.) Monogr. 25 (1971) 58.

  15. Cobalt Cubic space group: Fm-3m ICDD: 00-015-0806, Natl. Bur. Stand. (U.S.) Monogr. 25 (1966) 10.

  16. J.J. Ruan, C.P. Wang, C.C. Zhao, S.Y. Yang, T. Yang, and X.J. Liu: Intermetallics, 2014, vol. 49, pp. 121–31. https://doi.org/10.1016/j.intermet.2014.01.011.

    Article  CAS  Google Scholar 

  17. Y. Liu, T. Takasugi, and O. Izumi: Metall. Mater. Trans. A, 1986, vol. 17A, pp. 1433–39. https://doi.org/10.1007/BF02650125.

    Article  CAS  Google Scholar 

  18. R. Sailer, G. McCarthy, Titanium HCP space group: P63/mmc ICDD: 00-044-1294, ICDD. (1993).

  19. L.J. Nagel, B. Fultz, and J.L. Robertson: J. Phase Equil., 1997, vol. 18(1), pp. 21–23. https://doi.org/10.1007/BF02646756.

    Article  CAS  Google Scholar 

  20. J.-H. Xu, T. Oguchi, and A.J. Freeman: Phys. Rev. B, 1987, vol. 35(13), pp. 6940–43. https://doi.org/10.1103/PhysRevB.35.6940.

    Article  CAS  Google Scholar 

  21. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken: Acta Mater., 2016, vol. 106, pp. 304–12. https://doi.org/10.1016/j.actamat.2016.01.028.

    Article  CAS  Google Scholar 

  22. T. Takasugi and O. Izumi: Acta Metall., 1985, vol. 33, pp. 33–38. https://doi.org/10.1016/0001-6160(85)90216-0.

    Article  CAS  Google Scholar 

  23. ASTM International, 2017, B311–17. https://doi.org/10.1520/B0311-17

  24. ASTM International, 2011, E562–11. https://doi.org/10.1520/E0562-11

  25. T.M. Smith, P. Bonacuse, J. Sosa, M. Kulis, and L. Evans: Mater. Charact., 2018, vol. 140, pp. 86–94. https://doi.org/10.1016/j.matchar.2018.03.051.

    Article  CAS  Google Scholar 

  26. H.A. Kuhn, H. Biermann, T. Ungar, and H. Mughrabi: Acta Metall. Mater., 1991, vol. 39, pp. 2783–94. https://doi.org/10.1016/0956-7151(91)90095-I.

    Article  CAS  Google Scholar 

  27. J. Rodríguez-Carvajal: Physica B, 1993, vol. 192, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I.

    Article  Google Scholar 

  28. G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47(1), pp. 558–61. https://doi.org/10.1103/PhysRevB.47.558.

    Article  CAS  Google Scholar 

  29. G. Kresse and J. Hafner: Phys. Rev. B, 1994, vol. 49(20), pp. 14251–69. https://doi.org/10.1103/PhysRevB.49.14251.

    Article  CAS  Google Scholar 

  30. G. Kresse and J. Furthmueller: Phys. Rev. B, 1996, vol. 54(16), pp. 11169–86. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  31. G. Kresse and J. Furthmueller: Comput. Mater. Sci., 1996, vol. 6, pp. 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  CAS  Google Scholar 

  32. MedeA version 2.6.6, Materials Design Inc, Angel Fire, NM, 2009.

  33. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59(3), pp. 1758–75. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  34. M. Methfessel and A.T. Paxton: Phys. Rev. B, 1989, vol. 40(6), pp. 3616–21. https://doi.org/10.1103/PhysRevB.40.3616.

    Article  CAS  Google Scholar 

  35. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  36. X.L. Liu, S.-L. Shang, Y.-J. Hu, Y. Wang, Y. Du, and Z.-K. Liu: Mater. Des., 2017, vol. 133, pp. 39–46. https://doi.org/10.1016/j.matdes.2017.07.028.

    Article  CAS  Google Scholar 

  37. Y. Le Page and P. Saxe: Phys. Rev. B, 2002, vol. 65(10), p. 104104. https://doi.org/10.1103/PhysRevB.65.104104.

    Article  CAS  Google Scholar 

  38. A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard: Phys. Rev. Lett., 1990, vol. 65, pp. 353–56. https://doi.org/10.1103/PhysRevLett.65.353.

    Article  CAS  Google Scholar 

  39. S.R. Koneru: Modelling Chemistry, Structure and Properties of Concentrated Alloys at the Atomic Scale, Indian Institute of Science Bangalore, Bangalore, 2019.

    Google Scholar 

  40. F. Wang, D. Ma, and A. Bührig-Polaczek: Mater. Character., 2017, vol. 127, pp. 311–16. https://doi.org/10.1016/j.matchar.2017.02.030.

    Article  CAS  Google Scholar 

  41. S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee, and K. Chattopadhyay: Acta Mater., 2015, vol. 97, pp. 29–40. https://doi.org/10.1016/j.actamat.2015.06.034.

    Article  CAS  Google Scholar 

  42. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, 3rd ed. CRC Press, Boca Raton, 2009, p. 258.

    Google Scholar 

  43. Y. Chen, C. Wang, J. Ruan, T. Omori, R. Kainuma, K. Ishida, and X. Liu: Acta Mater., 2019, vol. 170, pp. 62–74. https://doi.org/10.1016/j.actamat.2019.03.013.

    Article  CAS  Google Scholar 

  44. F.L.R. Tirado, S. Taylor, and D.C. Dunand: Acta Mater., 2019, vol. 172, pp. 44–54. https://doi.org/10.1016/j.actamat.2019.04.031.

    Article  CAS  Google Scholar 

  45. K.V. Vamsi and S. Karthikeyan: Scripta Mater., 2017, vol. 130, pp. 269–73. https://doi.org/10.1016/j.scriptamat.2016.11.039.

    Article  CAS  Google Scholar 

  46. K.V. Vamsi: Planar Fault Energies in Geometrically Close Packed A3B Intermetallics, Indian Institute of Science Bangalore, Bangalore, 2018.

    Google Scholar 

  47. Y. Mishin: Acta Mater., 2004, vol. 52, pp. 1451–67. https://doi.org/10.1016/j.actamat.2003.11.026.

    Article  CAS  Google Scholar 

  48. M.E. Thompson, C.S. Su, and P.W. Voorhees: Acta Metall. Mater., 1994, vol. 42, pp. 2107–22. https://doi.org/10.1016/0956-7151(94)90036-1.

    Article  CAS  Google Scholar 

  49. U. Glatzel and M. Feller-Kniepmeier: Scripta Metall., 1989, vol. 23, pp. 1839–44. https://doi.org/10.1016/0036-9748(89)90468-7.

    Article  CAS  Google Scholar 

  50. J. Gump, H. Xia, M. Chirita, R. Sooryakumar, M.A. Tomaz, and G.R. Harp: J. Appl. Phys., 1999, vol. 86, pp. 6005–09. https://doi.org/10.1063/1.371647.

    Article  CAS  Google Scholar 

  51. R.W. Jackson, M.S. Titus, M.R. Begley, and T.M. Pollock: Surf. Coat. Technol., 2016, vol. 289, pp. 61–68. https://doi.org/10.1016/j.surfcoat.2015.12.083.

    Article  CAS  Google Scholar 

  52. C. Woodward, A. van de Walle, M. Asta, and D.R. Trinkle: Acta Mater., 2014, vol. 75, pp. 60–70. https://doi.org/10.1016/j.actamat.2014.04.056.

    Article  CAS  Google Scholar 

  53. I. Schmidt and D. Gross: J. Mech. Phys. Solids., 1997, vol. 45, pp. 1521–49. https://doi.org/10.1016/S0022-5096(97)00011-2.

    Article  Google Scholar 

  54. S.V. Prikhodko, H. Yang, A.J. Ardell, J.D. Carnes, and D.G. Isaak: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2403–08. https://doi.org/10.1007/s11661-999-0248-9.

    Article  CAS  Google Scholar 

  55. L. Zhu, H. Pan, J. Cheng, L. Xiao, J. Guo, and H. Ji: J. Alloys Compd., 2022, vol. 918, 165677. https://doi.org/10.1016/j.jallcom.2022.165677.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. S. Suwas and Prof. K. Chattopadhyay for providing access to the alloy melting and casting facility, AFMM, IISc Bangalore, for the electron microscope facility. A portion of the research was performed using facilities at CeNSE, funded by the Department of Information Technology, Govt. of India and located at Indian Institute of Science, Bangalore. SKV thanks Prof. T. A. Abinandanan for useful discussion, Prof. T. Ungar for guidance in misfit calculation, Prof. D. Banerjee for access to MIPAR software, and govt. of India for the Ph.D. scholarship.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shailendra Kumar Verma or S. Karthikeyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 209 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S.K., Pramanik, A., Jyothsna, K. et al. Phase Transformation Temperatures, γγ′ Lattice Parameter Misfit, and γ′ Precipitate Morphology in Co–Ti–V Alloys. Metall Mater Trans A 53, 4011–4022 (2022). https://doi.org/10.1007/s11661-022-06806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06806-y

Navigation