Skip to main content
Log in

Influence of Tempering on Macro- and Micro-Residual Stresses and Yield Stress of Ferritic-Pearlitic Drawn, Coiled, and Straightened Wires

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Residual stresses caused by different deformation steps during the processing of wires significantly affect the mechanical properties of the final product. However, in the literature, there is a lack of detailed information about their correlation with mechanical properties. Therefore, the proposed work focuses on the influence of tempering on the macro- and micro-residual stresses, and related mechanical properties of a ferritic-pearlitic 27MnSiVS6 steel wire in the deformed state after hot rolling, drawing, coiling, and straightening. Characterization of the wire in the deformed state indicates macro-residual stresses that remain high after tempering at a temperature of 400 °C for 10 minutes and decrease significantly after tempering at 475 °C for 10 minutes. In situ high-energy X-ray diffraction measurements during heating of wires in the deformed state reveal that micro-residual stresses remain unchanged up to temperatures of 200 °C, while they decrease at 300 °C. Investigations of the mechanical properties show that a reduction of micro-residual stresses correlates with a reduction of the curvature of the stress–strain curve below the yield point, which increases the yield stress. Conversely, the reduction of macro-residual stresses begins in the temperature regime of recovery and relaxation, where a reduction of yield stress and tensile strength occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Atienza and M. Elices: Mater. Struct., 2004, vol. 37, pp. 301–04.

    Article  CAS  Google Scholar 

  2. C. Borchers and R. Kirchheim: Prog. Mater. Sci., 2016, vol. 82, pp. 405–44.

    Article  CAS  Google Scholar 

  3. M.R. Ripoll, S.M. Weygand, and H. Riedel: Mater. Sci. Eng. A, 2010, vol. 527A, pp. 3064–72.

    Article  Google Scholar 

  4. J.M. Atienza and M. Elices: Mater. Struct., 2003, vol. 36, pp. 548–52.

    Article  CAS  Google Scholar 

  5. P. Withers and H.D.K.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  CAS  Google Scholar 

  6. U. Wolfstieg and E. Macherauch: Chemie-lng.-Techn., 1973, vol. 45, pp. 760–70.

    CAS  Google Scholar 

  7. M. Jandera and J. Machacek: Thin-Walled Structures, 2014, vol. 83, pp. 12–18, 2014.

  8. W. Liu, K.J.R. Rasmussen, and H. Zhang: Eng. Struct., 2017, vol. 150, pp. 986–95.

    Article  Google Scholar 

  9. J. Ruiz-Hervias, J.M. Atienza, M. Elices, and E.C. Oliver: Mater. Sci. Eng. A, 2008, vol. 480A, pp. 439–48.

    Article  Google Scholar 

  10. A. Durgaprasad, S. Gire, S. Lenka, S. Kundu, S. Mishra, S. Chandra, D.R. Doherty and I. Samajdar: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4583–97.

  11. M. Jandera, L. Gardner, and J. Machacek: J. Constr. Steel Res., 2008, vol. 64, pp. 1255–63.

    Article  Google Scholar 

  12. A.D. Aloraier, S. Joshi, J.W.H. Price, and K. Alawadhi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2030–37.

    Article  Google Scholar 

  13. G. Totten, M. Howes and T. Inoue: Handbook of Residual Stress and Deformation of Steel, ASM International, Materials Park Ohio, 2002, pp.54–69.

  14. A.G. Kostryzhev: Bauschinger Effect In Nb And V Microalloyed Line Pipe Steels, PhD Theses, School of Metallurgy and Materials, Birmingham, 2009.

  15. S. Wesselmecking, M. Haupt, Y. Ma, W. Song, G. Hirt, and W. Bleck: Mater. Sci. Eng. A, 2021, vol. 828, p. 142056. https://doi.org/10.1016/j.msea.2021.142056.

    Article  CAS  Google Scholar 

  16. S. Lin, A. Borgenstam, A. Stark, and P. Hedström: Mater. Charact., 2022, vol. 185, p. 111774. https://doi.org/10.1016/j.matchar.2022.111774.

    Article  CAS  Google Scholar 

  17. M.L. Martinez-Perez, C.R. Borlando, F.J. Mompean, M. Hernandez-Garcia, J. Ruiz-Hervias, J.M. Atienza, M. Elices, R.L. Peng, and M.R. Daymond: Acta Mater., 2005, vol. 53, pp. 4415–25.

    Article  CAS  Google Scholar 

  18. DIN EN ISO 643, Mikrophotographische Bestimmung der scheinbaren Korngröße, 2003.

  19. N. Schell, K. Andrew, B. Felix, T. Fischer, M. Müller, and A. Scheyrer: Mater. Sci. Forum, 2014, vol. 772, pp. 57–61.

    Article  Google Scholar 

  20. A.P. Hammersley: FIT2D V10.3 Reference Manual V4.0 ESRF98HA01T, ESRF, 1998.

  21. G. Caglioti, A. Paoletti, and F. Ricci: Nucl. Instrum., 1958, vol. 3(4), pp. 223–28.

    Article  CAS  Google Scholar 

  22. D. Balzar and H. Ledbetter: Adv. X-ray Anal., 1995, vol. 38, pp. 397–404.

    CAS  Google Scholar 

  23. Diffrac.Suite User Manual Topas 5 Technical Reference, Bruker AXS GmbH, Germany, 2014.

  24. S.M.C. Bohemen: Scr. Mater., 2013, vol. 69, pp. 315–18.

    Article  Google Scholar 

  25. B. Cullity and S.R. Stock: X-ray-Diffraction, 3rd ed. Prentice Hall, New Jersey, 2001.

    Google Scholar 

  26. C. Garcia-Mateo and F.G. Caballero: ISIJ Int., 2005, vol. 45, pp. 1736–40.

    Article  CAS  Google Scholar 

  27. W. Bergmann: Werkstofftechnik 1, Carl Hanser Verlag München, 6th edition, 2008, pp. 123–27.

  28. M.A. Vicente Alvarez, M. Bergant, and T. Perez: Mater. Sci. Eng. A, vol. 527A, pp. 5939–46.

  29. M. Moreno, J. Teixeira, G. Geandier, J.-C. Hell, F. Bonnet, M. Salib, and S. Allain: Metals, 2019, vol. 9, pp. 1–3. https://doi.org/10.3390/met9010008.

    Article  CAS  Google Scholar 

  30. A. Vieweg, E. Povoden-Karadeniz, G. Ressel, P. Prevedel, T. Wojcik, F. Mendez-Martin, A. Stark, J. Keckes, and E. Kozeschnik: Mater. Des., 2017, vol. 136, pp. 214–22.

    Article  CAS  Google Scholar 

  31. J. Bauschinger: Mittheilungen aus dem mechanisch-technischen Laboratorium, München, 1886.

  32. E. Hemmerich, B. Rolfe, P. Hodgson, and M. Weiss: Mater. Sci. Eng. A, 2011, vol. 528A, pp. 3302–09.

    Article  Google Scholar 

  33. M.E. Kassner, P. Geantil, L.E. Levine, and B.C. Larson: Mater. Sci. Forum, 2009, vol. 604–605, pp. 39–51.

    Google Scholar 

  34. C.C. Li, J.D. Flasck, J.A. Yaker, and W. Leslie: Metall. Mater. Trans. A, 1978, vol. 9A, pp. 85–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support under the scope of the COMET program within the K2 Center “Integrated Computational Material, Process and Product Engineering (IC-MPPE)” (Project No 886385). This program is supported by the Austrian Federal Ministries for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) and for Digital and Economic Affairs (BMDW), represented by the Austrian Research Promotion Agency (FFG), and the federal states of Styria, Upper Austria, and Tyrol. Additionally, we want to thank KAMAX Holding GmbH & Co. KG for their excellent support and scientific input. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Lukas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukas, M., Mayer, M., Stark, A. et al. Influence of Tempering on Macro- and Micro-Residual Stresses and Yield Stress of Ferritic-Pearlitic Drawn, Coiled, and Straightened Wires. Metall Mater Trans A 53, 3977–3985 (2022). https://doi.org/10.1007/s11661-022-06803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06803-1

Navigation