Skip to main content
Log in

Effect of CrN Coating on Interfacial Creep Crack Initiation Behavior for Steel/Ni Dissimilar Metal Welded Joint

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Adding a CrN coating was found to be beneficial in inhibiting the surface crack at the interface for the steel–Ni joint. Instead, subsurface crack bands were detected due to the formation of the interfacial fine-grain zone (IFGZ) and interdiffusion zone (IDZ). The higher recrystallization fraction in IFGZ, solution strengthening from N and O and extra high-temperature strength provided by Cr2(N, O)3/tempered martensite phase boundaries in IDZ were the main factors affecting crack bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. M. Tabuchi, H. Hongo, and F. Abe: Mater. Trans. A, 2014, vol. 45, pp. 5068–75.

    Article  CAS  Google Scholar 

  2. B. Xiao, L. Xu, C. Cayron, J. Xue, G. Sha, and R. Logé: Acta Mater., 2020, vol. 195, pp. 199–208.

    Article  CAS  Google Scholar 

  3. K. Laha, K. Chandravathi, P. Parameswaran, S. Goyal, and M. Mathew: Mater. Trans. A, 2012, vol. 43, pp. 1174–86.

    Article  CAS  Google Scholar 

  4. K.-Y. Shin, J.-W. Lee, J.-M. Han, K.-W. Lee, B.-O. Kong, and H.-U. Hong: Mater. Charact., 2018, vol. 139, pp. 144–52.

    Article  CAS  Google Scholar 

  5. Y. Wang, C. Shao, M. Fan, N. Ma, and F. Lu: Mater. Sci. Eng. A, 2021, vol. 803, p. 140482.

    Article  CAS  Google Scholar 

  6. T. Matsunaga, H. Hongo, and M. Tabuchi: Mater. Sci. Eng. A, 2017, vol. 695, pp. 302–08.

    Article  CAS  Google Scholar 

  7. Y. Zhang, K. Li, Z. Cai, and J. Pan: Mater. Sci. Eng. A, 2019, vol. 764, p. 138185.

    Article  CAS  Google Scholar 

  8. J. Parker and G. Stratford: Mater. Sci. Eng. A, 2001, vol. 299, pp. 174–84.

    Article  Google Scholar 

  9. X. Zhang, X. Wu, R. Liu, and M. Yao: Mater. Sci. Eng. A, 2019, vol. 743, pp. 418–24.

    Article  CAS  Google Scholar 

  10. X. Zhang, C. Liu, F. Xuan, Z. Wang, and S. Tu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2282–87.

    Article  Google Scholar 

  11. A.G. Mora-García, M. Mosbacher, J. Hastreiter, R. Völkl, U. Glatzel, and J. Muñoz-Saldaña: Scripta Mater., 2020, vol. 178, pp. 522–26.

    Article  Google Scholar 

  12. F. Latief, K. Kakehi, and H. Murakami: Scripta Mater., 2013, vol. 68, pp. 126–29.

    Article  CAS  Google Scholar 

  13. Y. Liu, Y. Ru, H. Zhang, Y. Pei, S. Li, and S. Gong: Surf. Coat. Technol., 2021, vol. 406, p. 126668.

    Article  CAS  Google Scholar 

  14. J. Liu, Z. Hao, Z. Cui, D. Ma, J. Lu, Y. Cui, C. Li, W. Liu, S. Xie, and P. Hu: Corros. Sci., 2021, vol. 185, p. 109416.

    Article  CAS  Google Scholar 

  15. M.Z. Alam, D. Satyanarayana, D. Chatterjee, R. Sarkar, and D. Das: Mater. Sci. Eng. A, 2015, vol. 641, pp. 84–95.

    Article  CAS  Google Scholar 

  16. D. Lee, Y. Lee, and S. Kwon: Surf. Coat. Technol., 2001, vol. 141, pp. 227–31.

    Article  CAS  Google Scholar 

  17. Y. Li, B. Gu, S. Jiang, Y. Liu, Z. Shi, and J. Lin: Int. J. Plast., 2020, vol. 134, p. 102844.

    Article  CAS  Google Scholar 

  18. C. Xu, H. He, Z. Xue, and L. Li: Mater. Charact., 2021, vol. 171, p. 110801.

    Article  CAS  Google Scholar 

  19. Y. Liu, S. Tsukamoto, H. Hongo, F. Yin, M. Tabuchi, and F. Abe: Mater. Trans. A, 2019, vol. 50, pp. 3080–90.

    Article  CAS  Google Scholar 

  20. K. Hirota, K. Mitani, M. Yoshinaka, and O. Yamaguchi: Mater. Sci. Eng. A, 2005, vol. 399, pp. 154–60.

    Article  Google Scholar 

  21. Y. Wang, H. Cui, M. Fan, Y. Chen, and F. Lu: Mater. Charact., 2019, vol. 151, pp. 227–36.

    Article  CAS  Google Scholar 

  22. P. Sathiyamoorthi, J. Basu, S. Kashyap, K. Pradeep, and R.S. Kottada: Mater. Des., 2017, vol. 134, pp. 426–33.

    Article  CAS  Google Scholar 

Download references

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Nos. U2141213, 52171040 and 52001200) and China Postdoctoral Science Foundation (No. 2022M712035).

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenggui Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shao, C., Huang, S. et al. Effect of CrN Coating on Interfacial Creep Crack Initiation Behavior for Steel/Ni Dissimilar Metal Welded Joint. Metall Mater Trans A 53, 3817–3822 (2022). https://doi.org/10.1007/s11661-022-06801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06801-3

Navigation