Skip to main content
Log in

High Density of Interfaces With Severely Mechanical Difference Controlled High Ductility in Heterogeneous Materials Based on Crystal Plasticity

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The synthesis of various heterogeneous structures has provided a new design principle for the unprecedented mechanical properties of metallic materials, such as strength-ductility synergy and extraordinary strain hardening. However, the key parameter that controls such properties remains a challenging issue. For solving this, a series of simulations of HSs with precisely controlled microstructure have been done to examine its effect on mechanical properties based on the crystal plasticity model which is modified to take grain boundary hardening, hetero-deformation induced hardening and size-dependent damage variable into account. As for the microstructures with various grain size distributions (100 nm to 100 μm) for pure nickel and low carbon steels, the numerical results show good agreement with the experimental data in regards to the yield stress, subsequent strain hardening and uniform ductility. Furthermore, by manipulating the spatial distribution of coarse grains, the deformation mechanisms of three typical types of heterogeneous structures with bimodal size distributions were analyzed. In addition, the relationship between the interfaces with severely mechanical difference and strain hardening was quantitatively investigated. Overall, these findings can provide valuable guidance to the optimal design of heterogeneous microstructures with superior properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

HDI:

Hetero-deformation induced

BS:

Bimodal structure

HS:

Harmonic structure

LS:

Lamella structure

RVE:

Representative volume element

UE:

Uniform elongation

CG:

Coarse grain

FG:

Fine grain

GND:

Geometrically necessary dislocation

SSD:

Statistically stored dislocation

References

  1. H.D. Espinosa, J.E. Rim, F. Barthelat, and M.J. Buehler: Prog. Mater Sci., 2009, vol. 54(8), pp. 1059–1100.

    Article  CAS  Google Scholar 

  2. Y.S. Lin, C.T. Wei, E.A. Olevsky, and M.A. Meyers: J. Mech. Behav. Biomed. Mater., 2011, vol. 4(7), pp. 1145–56.

    Article  CAS  Google Scholar 

  3. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Science, 2004, vol. 304(5669), pp. 422–26.

    Article  CAS  Google Scholar 

  4. B. Farrokh and A.S. Khan: Int. J. Plast, 2009, vol. 25(5), pp. 715–32.

    Article  CAS  Google Scholar 

  5. X. Li and K. Lu: Science, 2019, vol. 364(6442), p. 733.

    Article  CAS  Google Scholar 

  6. P.C. Zhao, G.J. Yuan, R.Z. Wang, B. Guan, Y.F. Jia, X.C. Zhang, and S.T. Tu: J. Mater. Sci. Technol., 2021, vol. 83, pp. 196–207.

    Article  CAS  Google Scholar 

  7. G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia: Acta Mater., 2006, vol. 54(7), pp. 1759–66.

    Article  CAS  Google Scholar 

  8. B. Flipon, C. Keller, L.G. de la Cruz, E. Hug, and F. Barbe: Mater. Sci. Eng. A, 2018, vol. 729, pp. 249–56.

    Article  CAS  Google Scholar 

  9. S. Patra, S.M. Hasan, N. Narasaiah, and D. Chakrabarti: Mater. Sci. Eng. A, 2012, vol. 538, pp. 145–55.

    Article  CAS  Google Scholar 

  10. Y. Wang, C. Huang, Y. Li, F. Guo, Q. He, M. Wang, X. Wu, R.O. Scattergood, and Y. Zhu: Int. J. Plast., 2020, vol. 124, pp. 186–98.

    Article  CAS  Google Scholar 

  11. L. Zhu, C. Wen, C. Gao, X. Guo, Z. Chen, and J. Lu: Int. J. Plast., 2019, vol. 114, pp. 272–88.

    Article  CAS  Google Scholar 

  12. S.K. Vajpai, M. Ota, Z. Zhang, and K. Ameyama: Mater. Res. Lett., 2016, vol. 4(4), pp. 191–97.

    Article  CAS  Google Scholar 

  13. L. Lu, X. Chen, X. Huang, and K. Lu: Science, 2009, vol. 323(5914), pp. 607–10.

    Article  CAS  Google Scholar 

  14. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, and Y. Zhu: Proc Natl Acad Sci USA, 2015, vol. 112(47), pp. 14501–05.

    Article  CAS  Google Scholar 

  15. X. Liu, L. Sun, L. Zhu, J. Liu, K. Lu, and J. Lu: Acta Mater., 2018, vol. 149, pp. 397–406.

    Article  CAS  Google Scholar 

  16. Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang, and Y.T. Zhu: Int. J. Plast., 2019, vol. 123, pp. 196–207.

    Article  CAS  Google Scholar 

  17. P.-C. Zhao, B. Chen, Z.-G. Zheng, B. Guan, X.-C. Zhang, and S.-T. Tu: Metall. Mater. Trans. A, 2021, vol. 52A(1), pp. 394–412.

    Article  Google Scholar 

  18. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419(6910), pp. 912–15.

    Article  CAS  Google Scholar 

  19. G. Fan, L. Geng, H. Wu, K. Miao, X. Cui, H. Kang, T. Wang, H. Xie, and T. Xiao: Scr. Mater., 2017, vol. 135, pp. 63–67.

    Article  CAS  Google Scholar 

  20. M.F. Ashby: Philos. Mag., 1970, vol. 21(170), pp. 399–424.

    Article  CAS  Google Scholar 

  21. H. Gao and Y. Huang: Scr. Mater., 2003, vol. 48(2), pp. 113–18.

    Article  CAS  Google Scholar 

  22. J. Zhao, X. Lu, F. Yuan, Q. Kan, S. Qu, G. Kang, and X. Zhang: Int. J. Plast., 2020, vol. 125, pp. 314–20.

    Article  Google Scholar 

  23. X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, and D. Raabe: Int. J. Plast., 2019, vol. 113, pp. 52–73.

    Article  CAS  Google Scholar 

  24. J. Liu, J. Li, G. Dirras, K. Ameyama, F. Cazes, and M. Ota: Int. J. Plast., 2018, vol. 100, pp. 192–207.

    Article  CAS  Google Scholar 

  25. J. Cheng and S. Ghosh: J. Mech. Phys. Solids, 2017, vol. 99, pp. 512–38.

    Article  CAS  Google Scholar 

  26. B. Raeisinia, C.W. Sinclair, W.J. Poole, and C.N. Tomé: Modell. Simul. Mater. Sci. Eng., 2008, vol. 16(2), p. 025001.

    Article  Google Scholar 

  27. S. Berbenni, V. Favier, and M. Berveiller: Int. J. Plast., 2007, vol. 23(1), pp. 114–42.

    Article  CAS  Google Scholar 

  28. J. Li, W. Lu, S. Chen, and C. Liu: Int J Plast., 2020, vol. 126, p. 102626.

    Article  CAS  Google Scholar 

  29. L. Zhu, H. Ruan, A. Chen, X. Guo, and J. Lu: Acta Mater., 2017, vol. 128, pp. 375–90.

    Article  CAS  Google Scholar 

  30. X. Wang, F. Cazes, J. Li, A. Hocini, K. Ameyama, and G. Dirras: Mech. Mater., 2019, vol. 128, pp. 117–28.

    Article  Google Scholar 

  31. R. Yuan, I.J. Beyerlein, and C. Zhou: Mater. Res. Lett., 2016, vol. 5(4), pp. 251–57.

    Article  Google Scholar 

  32. Y. Zhu and X. Wu: Mater. Res. Lett., 2019, vol. 7(10), pp. 393–98.

    Article  Google Scholar 

  33. X. Wu and Y. Zhu: Mater. Res. Lett., 2017, vol. 5(8), pp. 527–32.

    Article  CAS  Google Scholar 

  34. H.S. Arora, A. Ayyagari, J. Saini, K. Selvam, S. Riyadh, M. Pole, H.S. Grewal, and S. Mukherjee: Sci. Rep., 2019, vol. 9(1), p. 1972.

    Article  CAS  Google Scholar 

  35. G.S. Sun, L.X. Du, J. Hu, and R.D.K. Misra: Mater. Sci. Eng. A, 2018, vol. 709, pp. 254–64.

    Article  CAS  Google Scholar 

  36. E.H. Lee, Elastic-Plastic Deformation at Finite Strains, (1969).

  37. J.R. Rice: J. Mech. Phys. Solids, 1971, vol. 19(6), pp. 433–55.

    Article  Google Scholar 

  38. E.P. Busso and F.A. McClintock: Int. J. Plast, 1996, vol. 12(1), pp. 1–28.

    Article  CAS  Google Scholar 

  39. D.-F. Li and N.P. O’Dowd: J. Mech. Phys. Solids, 2011, vol. 59(12), pp. 2421–41.

    Article  CAS  Google Scholar 

  40. D.-F. Li, B.J. Golden, and N.P. O’Dowd: Acta Mater., 2014, vol. 80, pp. 445–56.

    Article  CAS  Google Scholar 

  41. R. Hill and K. Havner: J. Mech. Phys. Solids, 1982, vol. 30(1–2), pp. 5–22.

    Article  CAS  Google Scholar 

  42. G. Venkatramani, S. Ghosh, and M. Mills: Acta Mater., 2007, vol. 55(11), pp. 3971–86.

    Article  CAS  Google Scholar 

  43. G. Venkataramani, K. Kirane, and S. Ghosh: Int. J. Plast., 2008, vol. 24(3), pp. 428–54.

    Article  CAS  Google Scholar 

  44. C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, and Y.T. Zhu: Mater. Today, 2018, vol. 21(7), pp. 713–19.

    Article  CAS  Google Scholar 

  45. J. Li, G.J. Weng, S. Chen, and X. Wu: Int. J. Plast., 2017, vol. 88, pp. 89–107.

    Article  CAS  Google Scholar 

  46. C.O. Frederick and P.J. Armstrong: Mater. High Temp., 2007, vol. 24(1), pp. 1–26.

    Article  Google Scholar 

  47. Y. Zhang, H. Chen, Y.F. Jia, D.F. Li, G.J. Yuan, X.C. Zhang, and S.T. Tu: Int. J. Mech. Sci., 2021, vol. 1(191), p. 106068.

    Article  Google Scholar 

  48. H.K. Park, K. Ameyama, J. Yoo, H. Hwang, and H.S. Kim: Mater. Res. Lett., 2018, vol. 6(5), pp. 261–67.

    Article  CAS  Google Scholar 

  49. D.-F. Li, R.A. Barrett, P.E. O’Donoghue, N.P. O’Dowd, and S.B. Leen: J. Mech. Phys. Solids, 2017, vol. 101, pp. 44–62.

    Article  CAS  Google Scholar 

  50. J. Sheng, P. La, J. Su, J. Ren, J. Ma, Y. Shi, Z. Li, and J. Wang: Mod. Phys. Lett. B, 2018, vol. 32(17), p. 1850182.

    Article  CAS  Google Scholar 

  51. D.-F. Li, C.M. Davies, S.-Y. Zhang, C. Dickinson, and N.P. O’Dowd: Acta Mater., 2013, vol. 61(10), pp. 3575–84.

    Article  CAS  Google Scholar 

  52. S.X. Li and G.R. Cui: Dependence of strength, elongation, and toughness on grain size in metallic structural materials. J. Appl. Phys., 2007, vol. 101(8), p. 083525.

    Article  Google Scholar 

  53. J.S. Hayes, R. Keyte, and P.B. Prangnell: Mater. Sci. Technol., 2013, vol. 16(11–12), pp. 1259–63.

    Google Scholar 

  54. M. Spiegel: Theory and Problems of Probability and Statistics, McGraw-Hill, New York, 1975.

    Google Scholar 

  55. Q. Du, V. Faber, and M. Gunzburger: SIAM Rev., 1999, vol. 41(4), pp. 637–76.

    Article  Google Scholar 

  56. B. Flipon, C. Keller, R. Quey, and F. Barbe: Int. J. Solids Struct., 2020, vol. 184, pp. 178–92.

    Article  Google Scholar 

  57. S. Fu, J. Liu, and Z. Wang: Mater. Sci. Eng. A, 2019, vol. 751, pp. 253–62.

    Article  CAS  Google Scholar 

  58. I.A. Ovid’ko, R.Z. Valiev, and Y.T. Zhu: Prog. Mater. Sci., 2018, vol. 94, pp. 462–540.

    Article  CAS  Google Scholar 

  59. R.Q. Cao, J. Pan, Y. Lin, and Y. Li: Mater. Sci. Eng. A, 2019, vol. 760, pp. 458–68.

    Article  CAS  Google Scholar 

  60. Y. Lin, J. Pan, H.F. Zhou, H.J. Gao, and Y. Li: Acta Mater., 2018, vol. 153, pp. 279–89.

    Article  CAS  Google Scholar 

  61. A. Bhattacharya, A. Karmakar, A. Karani, M. Ghosh, and D. Chakrabarti: J. Mater. Eng. Perform., 2019, vol. 28(2), pp. 753–68.

    Article  CAS  Google Scholar 

  62. Y. Shi, B. Li, F. Gao, L. Wang, F. Qin, H. Liu, and S. Li: Materialia, 2019, vol. 5, p. 100181.

    Article  CAS  Google Scholar 

  63. R.W. Armstrong: Mater. Trans., 2014, vol. 55(1), pp. 2–12.

    Article  CAS  Google Scholar 

  64. Y. Estrin, H.S. Kim, and F.R.N. Nabarro: Acta Mater., 2007, vol. 55(19), pp. 6401–07.

    Article  CAS  Google Scholar 

  65. F. Yin, G.J. Cheng, R. Xu, K. Zhao, Q. Li, J. Jian, S. Hu, S. Sun, L. An, and Q. Han: Scr. Mater., 2018, vol. 155, pp. 26–31.

    Article  CAS  Google Scholar 

  66. S. Takaki, K. Kawasaki, and Y. Kimura: J. Mater. Process. Technol., 2001, vol. 117(3), pp. 359–63.

    Article  CAS  Google Scholar 

  67. M. Considère: Ann. Ponts Chaussees, 1885, vol. 9, p. 574.

    Google Scholar 

  68. M. Yang, Y. Pan, F. Yuan, Y. Zhu, and X. Wu: Mater. Res. Lett., 2016, vol. 4(3), pp. 145–51.

    Article  CAS  Google Scholar 

  69. D.H. Shin and K.-T. Park: Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 299–302.

    Article  Google Scholar 

  70. R.B. Singh, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna: Metall. Mater. Trans. A, 2017, vol. 48A(3), pp. 1189–1203.

    Article  Google Scholar 

  71. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Scr. Mater., 1999, vol. 40(7), pp. 795–800.

    Article  CAS  Google Scholar 

  72. N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito: Scr. Mater., 2002, vol. 46(4), pp. 305–10.

    Article  CAS  Google Scholar 

  73. S. Takaki, D. Akama, N. Nakada, and T. Tsuchiyama: Mater. Trans., 2014, vol. 55(1), pp. 28–34.

    Article  CAS  Google Scholar 

  74. Y.Z. Tian, Y.P. Ren, S. Gao, R.X. Zheng, J.H. Wang, H.C. Pan, Z.F. Zhang, N. Tsuji, and G.W. Qin: J. Mater. Sci. Technol., 2020, vol. 48, pp. 31–35.

    Article  Google Scholar 

  75. Y. Zhang, P.C. Millett, M. Tonks, and B. Biner: Scr. Mater., 2012, vol. 66(2), pp. 117–20.

    Article  CAS  Google Scholar 

  76. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe: Acta Mater., 2014, vol. 81, pp. 386–400.

    Article  CAS  Google Scholar 

  77. B. Ji and H. Gao: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids, 2004, vol. 52(9), pp. 1963–90.

    Article  Google Scholar 

  78. D. Jia, K.T. Ramesh, and E. Ma: Scr. Mater., 1999, vol. 42(1), pp. 73–78.

    Article  Google Scholar 

  79. V. Patlan, A. Vinogradov, K. Higashi, and K. Kitagawa: Mater. Sci. Eng. A, 2001, vol. 300(1), pp. 171–82.

    Article  Google Scholar 

  80. Y. Liu, Y. Cao, Q. Mao, H. Zhou, Y. Zhao, W. Jiang, Y. Liu, J.T. Wang, Z. You, and Y. Zhu: Acta Mater, 2020, vol. 189, pp. 129–44.

    Article  CAS  Google Scholar 

  81. G. Niu, H. Wu, D. Zhang, N. Gong, and D. Tang: Metals, 2017, vol. 7(8), p. 316.

    Article  Google Scholar 

  82. X. Li, L. Lu, J. Li, X. Zhang, and H. Gao: Nat. Rev. Mater., 2020, vol. 5(9), pp. 706–23.

    Article  CAS  Google Scholar 

  83. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 47(6), pp. 1239–63.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Key Research and Development Program of China (2018YFC1902404), the National Natural Science Foundation of China (51725503,51975211), Shanghai Rising-Star Program (20QA1402500) and Foundation Strengthening Plan Technology Field Fund Project (2019-JCJQ-JJ-454). The authors are also grateful to Prof. Esteban Busso for his fruitful discussion and insightful comments.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Cheng Zhang or Yun-Fei Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, XC., Jia, YF. et al. High Density of Interfaces With Severely Mechanical Difference Controlled High Ductility in Heterogeneous Materials Based on Crystal Plasticity. Metall Mater Trans A 53, 3918–3936 (2022). https://doi.org/10.1007/s11661-022-06794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06794-z

Navigation