Skip to main content

Advertisement

Log in

Effect of Processing Route on the Microstructure and Tensile Properties of an Al and Si-Bearing Medium-Mn TRIP Steel Microalloyed with V

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of processing route on the microstructure and tensile behavior has been analyzed in a V-microalloyed medium-Mn steel containing 3.5 Al and 1.2 Si (in wt pct). To obtain four different microstructures, as hot-rolled (HR) band was divided into several parts and three of them were submitted to treatments consisting of annealing at 620 °C (HRA), warm rolling (WR), and warm rolling followed by annealing at 600 °C (WRA). Complex microstructures i.e., mixture of austenite, alpha ferrite, delta ferrite, and martensite in different amounts, were observed. Tensile tests show that the balance between these phases is the most important factor that contributes to the variation in the strength and ductility of this steel. At a given value of strain, the enhancement of strength observed in HR samples is related to the presence of a high amount of fresh martensite of up to 32 pct, while the higher total elongation to failure found in WR sample is associated to the presence of about 60 pct of retained austenite. Optimal mechanical properties have been achieved for the WRA sample with a yield strength of 808 MPa and an ultrahigh product of strength and elongation of approximately 59.5 GPa pct, which guarantee its usefulness for automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Kuziak, R. Kawalla, and S. Waengler: Arch. Civil Mech. Eng., 2008, vol. 8, pp. 103–17.

    Article  Google Scholar 

  2. O. Bouaziz, H. Zurob, and M. Huang: Steel Res. Int., 2013, vol. 84, pp. 937–47.

    CAS  Google Scholar 

  3. D. Raabe, B. Sun, A. da Silva Kwiatkowski, B. Gault, H.W. Yen, K. Sedighiani, P. Thoudden Sukumar, I.R. SouzaFilho, S. Katnagallu, E. Jägle, P. Kürnsteiner, N. Kusampudi, L. Stephenson, M. Herbig, C.H. Liebscher, H. Springer, S. Zaefferer, V. Shah, S.L. Wong, C. Baron, M. Diehl, F. Roters, and D. Ponge: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 5517–86.

    Article  Google Scholar 

  4. T. Wang, J. Hu, and R.D.K. Misra: Mater. Sci. Eng., A, 2019, vol. 753, pp. 99–108.

    Article  CAS  Google Scholar 

  5. J. Hu, J.M. Zhang, G.S. Sun, L.X. Du, Y. Liu, Y. Dong, and R.D.K. Misra: J. Mater. Sci., 2019, vol. 54, pp. 6565–78.

    Article  CAS  Google Scholar 

  6. J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, and R.D.K. Misra: Mater. Charact., 2018, vol. 136, pp. 20–28.

    Article  CAS  Google Scholar 

  7. B. Hu, H. Luo, F. Yang, and H. Dong: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1457–64.

    Article  CAS  Google Scholar 

  8. B.C. de Cooman, P. Gibbs, S. Lee, and D.K. Matlock: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2563–72.

    Article  Google Scholar 

  9. N. Nakada, K. Mizutani, T. Tsuchiyama, and S. Takaki: Acta Mater., 2014, vol. 65, pp. 251–58.

    Article  CAS  Google Scholar 

  10. Y.K. Lee and J. Han: Mater. Sci. Technol., 2015, vol. 31, pp. 843–56.

    Article  CAS  Google Scholar 

  11. E. de Moor, D.K. Matlock, J.G. Speera, and M.J. Merwin: Scripta Mater., 2011, vol. 64, pp. 185–88.

    Article  Google Scholar 

  12. J. Emo, P. Maugis, and A. Perlade: Comput. Mater. Sci., 2016, vol. 125, pp. 206–17.

    Article  CAS  Google Scholar 

  13. W.S. Owen: Trans. Am. Soc. Met., 1954, vol. 46, pp. 812–29.

    Google Scholar 

  14. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki: Acta Mater., 2007, vol. 55, pp. 5027–38.

    Article  CAS  Google Scholar 

  15. H. Aydin, E. Essadiqi, I.H. Jung, and S. Yue: Mater. Sci. Eng. A, 2013, vol. 564, pp. 501–08.

    Article  CAS  Google Scholar 

  16. R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, and C.X. Huang: Mater. Sci. Eng. A, 2013, vol. 583, pp. 84–88.

    Article  CAS  Google Scholar 

  17. B.B. He, M. Wang, and M.X. Huang: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2971–77.

    Article  Google Scholar 

  18. D. Lee, J.K. Kim, S. Lee, K. Lee, and B.C. de Cooman: Mater. Sci. Eng. A, 2017, vol. 706, pp. 1–4.

    Article  CAS  Google Scholar 

  19. J. Hu, L.X. Du, Y. Dong, Q.W. Meng, and R.D.K. Misra: Mater. Charact., 2019, vol. 152, pp. 21–35.

    Article  CAS  Google Scholar 

  20. S. Lee, S. Lee, and B.C. de Cooman: Scripta Mater., 2011, vol. 65, pp. 225–28.

    Article  CAS  Google Scholar 

  21. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig: Acta Mater., 2014, vol. 68, pp. 238–53.

    Article  CAS  Google Scholar 

  22. M. Pozuelo, J.E. Wittig, J.A. Jiménez, and G. Frommeyer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1826–34.

    Article  CAS  Google Scholar 

  23. W. Hui, C. Shao, Y. Zhang, X. Zhao, and Y. Weng: Mater. Sci. Eng. A, 2017, vol. 707, pp. 501–10.

    Article  CAS  Google Scholar 

  24. M.X. Huang and B.B. He: J. Mater. Sci. Technol., 2018, vol. 34, pp. 417–20.

    Article  CAS  Google Scholar 

  25. H. Pan, H. Ding, and M. Cai: Mater. Sci. Eng. A, 2018, vol. 736, pp. 375–82.

    Article  CAS  Google Scholar 

  26. Y. Zhang, W. Hui, J. Wang, C. Shao, and X. Zhao: Steel Res. Int., 2019, vol. 90, p. 1800412. https://doi.org/10.1002/srin.201800412.

    Article  CAS  Google Scholar 

  27. H. Zheng, L. Fu, Z. Li, X. Ji, Q. Wang, W. Wang, and A. Shan: Mater. Today Commun., 2019, vol. 21, p. 100646. https://doi.org/10.1016/j.mtcomm.2019.100646.

    Article  CAS  Google Scholar 

  28. B. Hu, X. Tu, H. Luo, and X. Mao: J. Mater. Sci. Technol., 2020, vol. 47, pp. 131–41.

    Article  Google Scholar 

  29. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang: Science, 2017, vol. 357, pp. 1029–32.

    Article  CAS  Google Scholar 

  30. D.J. Dyson: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.

    CAS  Google Scholar 

  31. L. Cheng, A. Btttger, T. de Keijser, and E. Mittemeijer: Scripta Mater., 1990, vol. 24, pp. 509–14.

    Article  CAS  Google Scholar 

  32. Y. Li, W. Li, N. Min, W. Liu, and X. Jin: Acta Mater., 2017, vol. 139, pp. 96–108.

    Article  CAS  Google Scholar 

  33. T. Swarr and G. Krauss: Metall. Trans. A, 1976, vol. 7A, pp. 41–48.

    Article  CAS  Google Scholar 

  34. H.M. He: Mater. Sci. Technol., 2017, vol. 33, pp. 552–58.

    Article  CAS  Google Scholar 

  35. S. Lee, S.J. Lee, S. Santhosh Kumar, K. Lee, and B.C.D. Cooman: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3638–51.

    Article  Google Scholar 

  36. S.J. Lee, J. Kim, S.N. Kane, and B.C. de Cooman: Acta Mater., 2011, vol. 59, pp. 6809–19.

    Article  CAS  Google Scholar 

  37. S. Lee, J. Kim, S.J. Lee, and B.C. de Cooman: Scripta Mater., 2011, vol. 65, pp. 528–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R & D Program of China (Grant No. 2017YFB0304201), the Fundamental Research Funds for the Central Universities (Grant No. N180702012), and State Key Laboratory Opening Project of Northeastern University (Ref No. G20190006017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Jia or Jose A. Jimenez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Xiao, N., Jia, T. et al. Effect of Processing Route on the Microstructure and Tensile Properties of an Al and Si-Bearing Medium-Mn TRIP Steel Microalloyed with V. Metall Mater Trans A 53, 3724–3735 (2022). https://doi.org/10.1007/s11661-022-06780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06780-5

Navigation