Skip to main content
Log in

In Situ Study of Temperature Stability and Precipitation Kinetics of \(\delta \) and \(\eta \) Phases in Nickel Base Superalloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study aims at determining the temperature stability and precipitation kinetics of phases like \(\delta \)-Ni\(_3\)Nb, \(\delta \)-Ni\(_3\)Ta, \(\eta \)-Ni\(_3\)Ti, and \(\eta \)-Ni\(_3\)(Al,Nb) for potential hardening effect in nickel base superalloys for turbine discs. Two model compositions of nickel base superalloys with different Ti/Al, Nb/Al, and Ta/Al ratios were produced. These alloys were characterized using SEM and TEM. High-energy synchrotron X-ray diffraction (HE-XRD) was used to follow the evolution of phases during various heat treatments. The validity of composition criteria available in the literature as well as that of TCNI7 thermodynamic database to predict the composition and temperature stability of \(\delta \) and \(\eta \) phases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. TCNI7 database was only available for the present study. Several comparative calculations with TCNI8 database could be carried out as well and no significant difference in phase equilibrium in studied alloys was observed.

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. K. Tomihisa, Y. Kaneno, and T. Takasugi: Intermetallics, 2002, vol. 10, pp. 247–54.

    Article  CAS  Google Scholar 

  3. V. Ramaswamy, P. Swann, and D. West: J. Less Common Met., 1977, vol. 53, pp. 223–33.

    Article  CAS  Google Scholar 

  4. H. Sugimura, Y. Kaneno, and T. Takasugi, Mater. Trans., 2011, vol. 52, pp. 663–71.

    Article  CAS  Google Scholar 

  5. C.T. Sims, N.S. Stoloff, and W.C. Hagel, Superalloys II, Wiley, New York, 1987.

    Google Scholar 

  6. Y. Xu, C. Yang, X. Xiao, X. Cao, G. Jia, and Z. Shen: Mater. Sci. Eng.: A, 2011, vol. 530, pp. 315–26.

    Article  CAS  Google Scholar 

  7. G. Liu, X. Xiao, M. Véron, and S. Birosca, Acta Mater., 2020, vol. 185, pp. 493–506.

    Article  CAS  Google Scholar 

  8. C. Wang, T. Wang, M. Tan, Y. Guo, J. Guo, and L. Zhou: J. Mater. Sci. Technol., 2015, vol. 31, pp. 135–42.

    Article  Google Scholar 

  9. T. Wang, C. Wang, W. Sun, X. Qin, J. Guo, and L. Zhou: Mater. Des., 2014, vol. 62, pp. 225–32.

    Article  CAS  Google Scholar 

  10. M.J. Wong, P.G. Sanders, J.P. Shingledecker, and C.L. White: Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 2015, vol. 46, pp. 2947–55.

    Article  CAS  Google Scholar 

  11. E. Pickering, H. Mathur, A. Bhowmik, O. Messé, J. Barnard, M. Hardy, R. Krakow, K. Loehnert, H. Stone, and C. Rae: Acta Mater., 2012, vol. 60, pp. 2757–69.

    Article  CAS  Google Scholar 

  12. B. Alabbad and S. Tin: Mater. Charact., 2019, vol. 151, pp. 53–63.

    Article  CAS  Google Scholar 

  13. B. Hassan and J. Corney: Mater. Sci. Technol., 2017, vol. 33, pp. 1879–89.

    Article  CAS  Google Scholar 

  14. C. Kienl, P. Mandal, H. Lalvani, and C.M.F. Rae: Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 2020, vol. 51, pp. 4008–21.

    Article  CAS  Google Scholar 

  15. K. Hou, M. Ou, M. Wang, H. Li, Y. Ma, and K. Liu: Mater. Sci. Eng.: A, 2019, vol. 763, pp. 138137.

    Article  CAS  Google Scholar 

  16. J.P. Shingledecker and G.M. Pharr: Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 2012, vol. 43, pp. 1902–10.

    Article  CAS  Google Scholar 

  17. M. Wang, J. Du, Q. Deng, Z. Tian, and J. Zhu, J. Alloys Compd., vol. 701, pp. 635–44.

    Article  CAS  Google Scholar 

  18. M. Jahangiri, J. Alloys Compd., 2019, vol. 802, pp. 535–45.

    Article  CAS  Google Scholar 

  19. S. Antonov, M. Detrois, R.C. Helmink, and S. Tin, J. Alloys Compd., 2015, vol. 626, pp. 76–86.

    Article  CAS  Google Scholar 

  20. L. Finet, V.A. Esin, V. Maurel, and L. Nazé, in Superalloys 2020, S. Tin, M. Hardy, J. Clews, J. Cormier, Q. Feng, J. Marcin, C. O’Brien, and A. Suzuki, eds., Springer, Cham, pp. 112–21

  21. M. Detrois, S. Antonov, K.A. Rozman, J.A. Hawk, and P.D. Jablonski, Metall. Mater. Trans. A, 2022, vol. 53A, pp. 2600–13.

    Article  CAS  Google Scholar 

  22. M. Detrois, R.C. Helmink, and S. Tin, Mater. Sci. Eng.: A, 2013, vol. 586, pp. 236–44.

    Article  CAS  Google Scholar 

  23. M. Detrois, R.C. Helmink, and S. Tin: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5332–43.

    Article  CAS  Google Scholar 

  24. V. Esin, R. Mallick, M. Dadé, B. Denand, J. Delfosse, and P. Sallot: Mater. Charact., 2020, vol. 169, p. 110654.

    Article  CAS  Google Scholar 

  25. FIT2D: www.esrf.eu/computing/scientific/FIT2D/.

  26. H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  27. FullProf Manual: https://www.ill.eu/sites/fullprof/php/tutorials.html.

  28. T. Fang, S.J. Kennedy, L. Quan, and T.J. Hicks: J. Phys.: Condens. Matter, 1992, vol. 4, pp. 2405–14.

    CAS  Google Scholar 

  29. P. Villars: Pearson’s Handbook: Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, 1997.

    Google Scholar 

  30. J. Sharma, A. Nicolaÿ, M. De Graef, and N. Bozzolo: Mater. Charact., 2021, vol. 176, p. 111105.

    Article  CAS  Google Scholar 

  31. A. Assadiki, V.A. Esin, M. Bruno, and R. Martinez: Comput. Mater. Sci., 2018, vol. 145, pp. 1–7.

    Article  CAS  Google Scholar 

  32. P. Mignanelli, N. Jones, M. Hardy, and H. Stone: Mater. Sci. Eng.: A, 2014, vol. 612, pp. 179–86.

    Article  CAS  Google Scholar 

  33. W.-D. Cao: in Proceedings of the International Symposium on Superalloys and Various Derivatives 2005, E. Loria, eds., pp. 165–77

  34. J. van Vucht: J. Less Common Met., 1966, vol. 11, pp. 308–322.

    Article  Google Scholar 

  35. M. Durand-Charre: The Microstructure of Superalloys, CRC Press, Boca Raton, 1998.

    Google Scholar 

  36. X. Xie, G. Wang, J. Dong, C. Xu, W.-D. Cao, R. Kennedy, in Proceedings of the International Symposium on Superalloys and Various Derivatives 2005, E. Loria, eds., pp. 179–91.

  37. C. Stotter, C. Sommitsch, J. Wagner, H. Leitner, I. Letofsky-Papst, G.A. Zickler, W. Prantl, and M. Stockinger: Int. J. Mater. Res., 2008, vol. 99, pp. 376–80.

    Article  CAS  Google Scholar 

  38. A. Casanova, M. Hardy, and C. Rae: Morphology and Kinetics of Grain Boundary Precipitation in Alloy ATI 718Plus®, John Wiley & Sons, Ltd, New York, 2014, pp. 573–586

    Google Scholar 

  39. M. Revaud: Optimisation métallurgique du superalliage à base de Nickel 718Plus (Metallurgical optimisation of 718Plus alloy) (in French), Ph.D. thesis, MINES ParisTech, 2013.

Download references

Acknowledgments

The “Cristal” chair funded by SAFRAN Group is acknowledged for financial support of the present study. The authors thank the staff of the P07 line at PETRA III at DESY, especially, Andreas Stark for the assistance with HE-XRD experiments. Didier Locq (Onera) is gratefully acknowledged for fruitful discussions and simulations using TCNI8 database.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Esin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finet, L., Nazé, L., Maurel, V. et al. In Situ Study of Temperature Stability and Precipitation Kinetics of \(\delta \) and \(\eta \) Phases in Nickel Base Superalloys. Metall Mater Trans A 53, 3627–3638 (2022). https://doi.org/10.1007/s11661-022-06771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06771-6

Navigation