Skip to main content
Log in

Impact of Low-Temperature Neutron Irradiation on Tensile Behavior of Base Metal and Electron-Beam Welded 316L Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A study of 316L type stainless steel in its base metal and electron-beam (e-beam) welded conditions was performed to observe the effects of low-temperature (60 °C to 100 °C) neutron irradiation on the tensile behavior of the samples. Fractography was used in understanding the tensile-tested fracture surfaces of the 316L samples in these different forms with the characterization of the both base metal and welded samples using electron microscopy. Irradiation of the tensile specimens made free of defects of cutting and mechanical polishing showed a reduction in their tensile ductility with increased radiation-induced hardening up to 1.40 × 1019 n/cm2 (E > 0.1 MeV) fluence that corresponds to 1.1× 10−2 dpa, even at the low irradiation temperatures. These low-temperature neutron irradiated base metal and e-beam welded 316L specimens also consisted of closely similar fracture surfaces characteristic of ductile rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.S. Lima, A.M. Nascimento, H.F.G. Abreu, and P. De Lima-Neto: J. Mater. Sci., 2005, vol. 40, pp. 139–44.

    Article  CAS  Google Scholar 

  2. E.A. Kenik and J.T. Busby: Mater. Sci. Eng. R, 2012, vol. 73, pp. 67–83.

    Article  CAS  Google Scholar 

  3. H.R. Brager and F.A. Garner: J. Nucl. Mater., 1978, vol. 73, pp. 9–19.

    Article  CAS  Google Scholar 

  4. P.J. Maziasz: J. Nucl. Mater., 1982, vol. 108–109, pp. 359–84.

    Article  Google Scholar 

  5. M.G. Horsten and M.I. de Vries: J. Nucl. Mater., 1994, vol. 212–215, pp. 514–18.

    Article  Google Scholar 

  6. J.L. Scott, M.L. Grossbeck, A. Hishinuma, T. Kondo, A.F. Rowcliffe, and M.P. Tanaka: J. Nucl. Mater., 1986, vol. 141–143, p. 996.

    Article  Google Scholar 

  7. S. Saito, K. Fukaya, S. Ishiyama, H. Amezawa, M. Yonekawa, F. Takada, Y. Kato, T. Takeda, H. Takahashi, and M. Nakahira: J. Nucl. Mater., 2002, vol. 307–311, pp. 1573–77.

    Article  Google Scholar 

  8. T. Bulanova, A. Fedoseev, G. Kalinin, B. Rodchenkov, and V. Shamardin: J. Nucl. Mater., 2004, vol. 329–333, pp. 639–42.

    Article  Google Scholar 

  9. K. Farrell and T.S. Byun: J. Nucl. Mater., 2006, vol. 356, pp. 178–88.

    Article  CAS  Google Scholar 

  10. M.N. Babu, B.S. Dutt, S. Venugopal, G. Sasikala, S.K. Albert, A.K. Bhaduri, and T. Jayakumar: Procedia Eng., 2013, vol. 55, pp. 716–21.

    Article  CAS  Google Scholar 

  11. A.K. Suri, N. Krishnamurthy, and I.S. Batra: J. Phys. Conf. Ser., 2010, vol. 208, 012001.

    Article  Google Scholar 

  12. J.D. Elen and P. Fenici: J. Nucl. Mater., 1992, vol. 191–194, pp. 766–70.

    Article  Google Scholar 

  13. SHINE Medical Technologies: Demonstrated Technology, June 2020, https://shinemed.com/demonstrated-technology/.

  14. A. Silva, K. Leonard, L. Garrison, and C. Bryan: Mater. Sci. Eng. A, 2021, vol. 823, 141780.

    Article  CAS  Google Scholar 

  15. B. Silva, K. Leonard, M. Trammel, and C. Bryan: Mater. Sci. Eng. A, 2018, vol. 716, pp. 296–307.

    Article  CAS  Google Scholar 

  16. C. Silva, M. Song, K. Leonard, M. Wang, G. Was, and J. Busby: Mater. Sci. Eng. A, 2017, vol. 691, pp. 195–202.

    Article  CAS  Google Scholar 

  17. T. Rahman, W.L. Ebert, and J.E. Indacochea: Corros. Eng. Sci. Technol., 2018, vol. 53, pp. 226–23.

    Article  CAS  Google Scholar 

  18. S.A. David, J M. Vitek, R W. Reed, and T L. Hebble: Report No. ORNL/TM-10487, ORNL, 1987.

  19. K. Farrell and T.S. Byun: J. Nucl. Mater., 2001, vol. 296, pp. 129–38.

    Article  CAS  Google Scholar 

  20. M.I. de Vries: in: ECN (Petten) Rept. ECN-C-90-041, ed. J.G. Van der Laan, Netherlands Energy Research Foundation, Petten, 1990, p. 66.

  21. C. Robertson, L. Boulanger, and S. Poissonnet: J. Nucl. Mater., 1999, vol. 217&272, pp. 102–05.

    Article  Google Scholar 

  22. V. Karthik, S. Murugan, P. Parameswaran, C.N. Venkiteswaran, K.A. Gopal, N.G. Muralidharan, S. Saroja, and K.V. Kasiviswanathan: Energy Procedia, 2011, vol. 7, pp. 257–63.

    Article  CAS  Google Scholar 

  23. J. Lin, F. Chen, X. Tang, J. Liu, S. Shen, and G. Ge: Vacuum, 2020, vol. 174, 109183.

    Article  CAS  Google Scholar 

  24. T.S. Byun, B.E. Garrison, M.R. McAlister, X. Chen, M.N. Gussev, T.G. Lach, A. Le Coq, K. Linton, C.B. Joslin, J.K. Carver, F.A. List, R.R. Dehoff, and K.A. Terrani: J. Nucl. Mater., 2021, vol. 548, 152849.

    Article  CAS  Google Scholar 

  25. M.P. Tanaka, S. Hamada, A. Hishinuma, and M.L. Grossbeck: J. Nucl. Mater., 1988, vol. 155–157, p. 957.

    Article  Google Scholar 

  26. S.A. Maloy, M.R. James, W.R. Johnson, T.S. Byun, K. Farrell, and M.B. Toloczko: J. Nucl. Mater., 2003, vol. 318, pp. 283–91.

    Article  CAS  Google Scholar 

  27. A. Stergar, S.G. Eremin, S. Gavrilov, M. Lambrecht, O. Makarov, and V. Iakovlev: J. Nucl. Mater., 2016, vol. 473, pp. 28–34.

    Article  CAS  Google Scholar 

  28. W.R. Martin and J.R. Weir: Report No. ORNL-TM-1005, ORNL, 1965.

Download references

Acknowledgments

Funding for this research work was provided by the US Department of Energy’s National Nuclear Security Administration (DOE/NNSA), Office of Material Management and Minimization’s Molybdenum-99 Program. The authors would also like to thank their coworkers at ORNL for their support in this research work: Tom Geer, Christopher Stevens, Michael McAlister, Maxim Gussev, Pat Bishop, and Joel McDuffee. This work was also performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinthaka M. Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). This work was also performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.M., Leonard, K.J., Garrison, L.M. et al. Impact of Low-Temperature Neutron Irradiation on Tensile Behavior of Base Metal and Electron-Beam Welded 316L Stainless Steel. Metall Mater Trans A 53, 3615–3626 (2022). https://doi.org/10.1007/s11661-022-06770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06770-7

Navigation