Skip to main content

Environment-Assisted Fatigue Crack Propagation (EAFCP) Behavior of Ti64 Alloy Fabricated by Direct Energy Deposition (DED) Process

Abstract

Environment-assisted fatigue crack propagation (EAFCP) behavior of as-built and β-annealed Ti64 specimens manufactured by direct energy deposition (DED) process was examined in air and 3.5 pct NaCl solution under an anodic applied potential of Ecorr + 0.05 VSCE. As-built DED Ti64 specimen was found to be susceptible to EAFCP in 3.5 pct NaCl solution, and β anneal did not decrease the sensitivity to EAFCP. It was suggested that Cl bearing environment tended to decrease the tendency for crack bifurcation during EAFCP of DED Ti64 specimen, because of local corrosion damage at boundaries between α and β phases. Since crack bifurcation increases the resistance to fatigue crack propagation (FCP) by reducing effective ∆K (stress intensity factor range) at the tip of crack, the FCP rates of DED Ti64 specimen increased in 3.5 pct NaCl solution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. R.R. Boyer: Mater. Sci. Eng. A, 2007, vol. 213, pp. 103–14.

    Google Scholar 

  2. O.S. Fatoba, O.S. Adesina, and A.P.I. Popoola: Int. J. Adv. Manuf. Technol., 2018, vol. 97, pp. 2341–50.

    Google Scholar 

  3. R.S. Razavi, M. Salehi, M. Ramazani, and H.C. Man: Corrosion Sci., 2009, vol. 51, pp. 2324–29.

    CAS  Google Scholar 

  4. A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, M.K. Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R.M. Hosseini, S. Ramakrishna, and A.A. Zadpoor: J. Alloys Compd., 2019, vol. 804, pp. 163–91.

    CAS  Google Scholar 

  5. K. Bower, S. Murray, A. Reinhart, and A. Nieto: Results Mater, 2020, vol. 8, 100122.

    Google Scholar 

  6. A. Leon, G.K. Levy, T. Ron, A. Shirizly, and E. Aghion: Addit. Manuf., 2020, vol. 33, 101039.

    CAS  Google Scholar 

  7. J.B. Lee, D.I. Seo, and H.Y. Chang: Met. Mater. Int., 2020, vol. 26(1), pp. 39–45.

    CAS  Google Scholar 

  8. D.I. Seo and J.B. Lee: J. Electrochem. Soc., 2020, vol. 167(10), p.101509.

    CAS  Google Scholar 

  9. D.H. Abdeen and B.R. Palmer: Rapid Prototyping J., 2016, vol. 22, pp. 322–29.

    Google Scholar 

  10. Y. Byun, S.W. Lee, S.M. Seo, J.T. Yeom, S.E. Kim, N.H. Kang, and J.K. Hong: Met. Mater. Int., 2018, vol. 24, pp. 1213–220.

    CAS  Google Scholar 

  11. B.E. Carroll, T.A. Palmer, and A.M. Beese: Acta Mater., 2015, vol. 87, pp. 309–20.

    CAS  Google Scholar 

  12. S.Y. Kim, H.J. Oh, J.G. Kim, and S.S. Kim: Met. Mater. Int., 2022, vol. 28, pp. 205–15.

    Google Scholar 

  13. J. Yang, H. Yang, H. Yu, Z. Wang, and X. Zeng: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3583–93.

    CAS  Google Scholar 

  14. D.I. Seo and J.B. Lee: J. Electrochem. Soc., 2019, vol. 166, pp. 428–33.

    Google Scholar 

  15. N. Dai, J. Zhang, Y. Chen, and L.C. Zhang: J. Electrochem. Soc., 2017, vol. 164, pp. 428–34.

    Google Scholar 

  16. L.P. Borrego, J.D. Jesus, J.A.M. Ferreira, J.D. Costa, and C. Capela: Procedia Struct Integrity, 2019, vol. 17, pp. 562–67.

    Google Scholar 

  17. A.M. Fekry: Electrochim. Acta, 2009, vol. 54, pp. 3480–89.

    CAS  Google Scholar 

  18. J. Soltis: Corrosion Sci., 2015, vol. 90, pp. 5–22.

    CAS  Google Scholar 

  19. D.I. Seo and J.B. Lee: Corros Sci., 2020, vol. 173, 108789.

    CAS  Google Scholar 

  20. M. Nabhani, R.S. Razavi, and M. Barekat: Eng. Fail. Anal., 2019, vol. 97, pp. 234–41.

    CAS  Google Scholar 

  21. J.S. Jesus, L.P. Borrego, J.A.M. Ferreira, J.D. Costa, and C. Capela: Eng. Fail. Anal., 2020, vol. 118, 104852.

    CAS  Google Scholar 

  22. Y. Zhao, Y. Liu, X. Gai, Y. Bai, T. Zhang, D. Xu, and F. Wang: Corrosion, 2021, vol. 77(8), pp. 853–65.

    Google Scholar 

  23. J.L. Milner, F.A. Farha, C. Bunget, T. Kurfess, and V.H. Hammond: Mater. Sci. Eng. A, 2013, vol. 561, pp. 109–17.

    CAS  Google Scholar 

  24. M. Seifi, A. Salem, D. Satko, J. Shaffer, and J.J. Lewandowski: Int. J. Fatigue, 2017, vol. 94, pp. 263–87.

    CAS  Google Scholar 

  25. ASTM International: Standard test methods for determining average grain size E112, ASTM International, West Conshohocken, PA, 2004.

  26. S.J. Ahn, D.H. Jeong, Y.N. Kwon, M. Goto, H.K. Sung, and S.S. Kim: Int. J. Fatigue, 2018, vol. 111, pp. 186–95.

    CAS  Google Scholar 

  27. ASTM International: Standard test method for measurement of fatigue crack growth rates E647, ASTM International, West Conshohocken, PA, 2002.

  28. Y.B. Yu, S.S. Kim, Y.S. Lee, and J.H. Lee: Met. Mater. Trans. A, 2002, vol. 33, pp. 1399–12.

    Google Scholar 

  29. C. Li, Z.Y. Liu, X.Y. Fang, and Y.B. Guo: Procedia CIRP, 2018, vol. 71, pp. 348–53.

    Google Scholar 

  30. M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe: CIRP Ann., 2004, vol. 53, pp. 195–98.

    Google Scholar 

  31. A.E. Davis, J.R. Kennedy, J. Ding, and P.B. Prangnell: Mater. Charact., 2020, vol. 163, 110298.

    CAS  Google Scholar 

  32. S.J. Ann, J.H. Park, D.H. Jeong, H.K. Sung, Y.N. Sung, and S.S. Kim: Met. Mater. Int., 2018, vol. 24, pp. 327–36.

    Google Scholar 

  33. Y. Bai, X. Gai, L.C. Zhang, Y. Liu, Y. Hao, X. Zhang, R. Yang, and Y. Gao: Corrosion Sci., 2017, vol. 123, pp. 289–96.

    CAS  Google Scholar 

  34. M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, M.H. Fathi, and M. Shamanian: Corrosion, 2010, vol. 66, pp. 065004-1–65009.

    Google Scholar 

  35. D.H. Jung, J.K. Kwon, N.S. Woo, Y.J. Kim, M. Goto, and S.S. Kim: Metall. Mater. Trans. A, 2014, vol. 45, pp. 654–62.

    CAS  Google Scholar 

  36. B. Holper, H. Mayer, A.K. Vasudevan, and S.E. Stanzl-Tschegg: Int. J. Fatigue, 2003, vol. 25, pp. 397–411.

    CAS  Google Scholar 

  37. K. Tanaka and S. Matsuoka: Int. J. Fracture, 1977, vol. 13, pp. 563–83.

    CAS  Google Scholar 

  38. A. Hartman and J. Schijve: Eng. Fract. Mech., 1970, vol. 1, pp. 615–31.

    CAS  Google Scholar 

  39. M.A. Wahab and V. Raghuram: IMECE, 2013, vol. 14, pp. 1–0.

    Google Scholar 

  40. P. Paris and F. Erdogan: J. Basic Eng., 1963, vol. 85, pp. 528–33.

    CAS  Google Scholar 

  41. N. Nanninga, S.Y. Levy, and C. White: J. Res. Natl. Inst. Stand. Technol., 2010, vol. 115, pp. 437–52.

    CAS  Google Scholar 

  42. Y. Kondo, M. Kubota, and K. Shimada: Eng. Fract. Mech., 2010, vol. 77, pp. 1963–74.

    Google Scholar 

  43. Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1449–65.

    Google Scholar 

  44. D.H. Jeong, Y.N. Kwon, M. Goto, and S.S. Kim: Int. J. Mech. Mater. Eng., 2017, vol. 12, pp. 1–0.

    CAS  Google Scholar 

  45. S. Shrestha, J.E. Rassi, M. Kannan, and G. Morscher: Mater. Sci. Eng. A, 2021, vol. 823, 141701.

    CAS  Google Scholar 

  46. S.S. Kim, D.H. Jeong, and H.K. Sung: Met. Mater. Int., 2018, vol. 24, pp. 1–4.

    CAS  Google Scholar 

  47. S.M. Kim, H.S. Choi, J.H. Lee, and S.S. Kim: Int. J. Fatigue, 2020, vol. 140, 105802.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Technology Innovation Program (20002700) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the Industrial Technology Innovation Program (20009993) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Gi Kim or Sangshik Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, H., Kim, J.G., Lee, J. et al. Environment-Assisted Fatigue Crack Propagation (EAFCP) Behavior of Ti64 Alloy Fabricated by Direct Energy Deposition (DED) Process. Metall Mater Trans A 53, 3604–3614 (2022). https://doi.org/10.1007/s11661-022-06765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06765-4