Skip to main content

Application of Machine Learning Algorithms With and Without Principal Component Analysis for the Design of New Multiphase High Entropy Alloys

Abstract

The design of high entropy alloys (HEAs) can be accelerated using machine learning (ML) algorithms. In the current study, the design parameter’s effect on the algorithm prediction was established using Shapley additive explanation (SHAP) values. The higher dimension problem is reduced to lower dimension using kernel principal component analysis (KPCA). Testing accuracy of more than 85 pct was obtained for the support vector machine (SVM) with KPCA. Experimental data comparison confirms the improvement of accuracy for the decision tree (DT) and random forest (RF) after applying KPCA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. THERMO-CALC is a trademark of Thermo-Calc software

References

  1. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    CAS  Article  Google Scholar 

  2. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward: Nat. Commun., 2015, vol. 6, pp. 1–10.

    Article  CAS  Google Scholar 

  3. H. Jiang, D. Qiao, Y. Lu, Z. Ren, Z. Cao, T. Wang, and T. Li: Scripta Mater., 2019, vol. 165, pp. 145–49.

    CAS  Article  Google Scholar 

  4. N. Shah, M.R. Rahul, and G. Phanikumar: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 1574–80.

    Article  CAS  Google Scholar 

  5. Y.V. Krishna, U.K. Jaiswal, and M.R. Rahul: Scripta Mater., 2021, vol. 197, p. 113804.

    CAS  Article  Google Scholar 

  6. J.M. Rickman, T. Lookman, and S.V. Kalinin: Acta Mater., 2019, vol. 168, pp. 473–510.

    CAS  Article  Google Scholar 

  7. L. Ward and C. Wolverton: Curr. Opin. Solid State Mater. Sci., 2017, vol. 21, pp. 167–76.

    CAS  Article  Google Scholar 

  8. R. Jose and S. Ramakrishna: Appl. Mater. Today, 2018, vol. 10, pp. 127–32.

    Article  Google Scholar 

  9. J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, and G. Balasubramanian: Nat. Commun., 2019, vol. 10, pp. 1–10.

    CAS  Article  Google Scholar 

  10. A. Roy, T. Babuska, B. Krick, and G. Balasubramanian: Scripta Mater., 2020, vol. 185, pp. 152–58.

    CAS  Article  Google Scholar 

  11. S. Yang, J. Lu, F. Xing, L. Zhang, and Y. Zhong: Acta Mater., 2020, vol. 192, pp. 11–19.

    CAS  Article  Google Scholar 

  12. Q. Wu, Z. Wang, X. Hu, T. Zheng, Z. Yang, F. He, J. Li, and J. Wang: Acta Mater., 2020, vol. 182, pp. 278–86.

    CAS  Article  Google Scholar 

  13. H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao, J.A. Hawk, and T. Li: Mater. Des., 2018, vol. 142, pp. 101–05.

    CAS  Article  Google Scholar 

  14. F. He, Z. Wang, C. Ai, J. Li, J. Wang, and J.J. Kai: Mater. Chem. Phys., 2019, vol. 221, pp. 138–43.

    CAS  Article  Google Scholar 

  15. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li: Sci. Rep., 2014, vol. 4, pp. 1–5.

    Google Scholar 

  16. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li: Acta Mater., 2017, vol. 124, pp. 143–50.

    CAS  Article  Google Scholar 

  17. D. Choudhuri, B. Gwalani, S. Gorsse, R.S. Mishra, and R. Banerjee: Acta Mater., 2019, vol. 165, pp. 420–30.

    CAS  Article  Google Scholar 

  18. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu: Acta Mater., 2016, vol. 116, pp. 332–42.

    CAS  Article  Google Scholar 

  19. S. Dasari, Y. Chang, A. Jagetia, V. Soni, A. Sharma, B. Gwalani, S. Gorsse, A. Yeh, and R. Banerjee: Mater. Sci. Eng. A, 2021, vol. 805, p. 140551.

    CAS  Article  Google Scholar 

  20. Y. Zeng, M. Man, K. Bai, and Y.W. Zhang: Mater. Des., 2021, vol. 202, p. 109532.

    CAS  Article  Google Scholar 

  21. K. Kaufmann and K.S. Vecchio: Acta Mater., 2020, vol. 198, pp. 178–222.

    CAS  Article  Google Scholar 

  22. M.R. Rahul and G. Phanikumar: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2594–98.

    Article  CAS  Google Scholar 

  23. R. Li, L. Xie, W.Y. Wang, P.K. Liaw, and Y. Zhang: Front. Mater., 2020, vol. 7, pp. 1–2.

    Article  Google Scholar 

  24. A. Raturi, J.C. Aditya, N.P. Gurao, and K. Biswas: J. Alloys Compd., 2019, vol. 806, pp. 587–95.

    CAS  Article  Google Scholar 

  25. L. Zhang, M. He, and S. Shao: Nano Energy, 2020, vol. 78, p. 105380.

    CAS  Article  Google Scholar 

  26. Y. Liu, B. Guo, X. Zou, Y. Li, and S. Shi: Energy Storage Mater., 2020, vol. 31, pp. 434–50.

    Article  Google Scholar 

  27. T. Wang, C. Zhang, H. Snoussi, and G. Zhang: Adv. Funct. Mater., 2020, vol. 30, pp. 1–4.

    Google Scholar 

  28. Y.J. Chang, C.Y. Jui, W.J. Lee, and A.C. Yeh: J. Met., 2019, vol. 71, pp. 3433–42.

    CAS  Google Scholar 

  29. L. Zhang, H. Chen, X. Tao, H. Cai, J. Liu, Y. Ouyang, Q. Peng, and Y. Du: Mater. Des., 2020, vol. 193, p. 108835.

    CAS  Article  Google Scholar 

  30. N. Islam, W. Huang, and H.L. Zhuang: Comput. Mater. Sci., 2018, vol. 150, pp. 230–35.

    CAS  Article  Google Scholar 

  31. S.M. Lundberg, G.G. Erion, and S. Lee: arXiv:1802.03888v3.

  32. J.M. Rickman: NPJ Comput. Mater., 2018, vol. 5, pp. 1–8.

    Google Scholar 

  33. S. Gorsse, M.H. Nguyen, O.N. Senkov, and D.B. Miracle: Data Brief, 2018, vol. 21, pp. 2664–78.

    CAS  Article  Google Scholar 

  34. M.L. Waskom: J. Open Source Softw., 2021, vol. 6, p. 3021.

    Article  Google Scholar 

  35. J. Schmidt, M.R.G. Marques, S. Botti, and M.A.L. Marques: NPJ Comput. Mater., 2019, vol. 5, p. 83.

    Article  Google Scholar 

  36. D.R. Cutler, T.C. Edwards, K.H. Beard, A. Cutler, K.T. Hess, J. Gibson, and J.J. Lawler: Ecology, 2007, vol. 88, pp. 2783–92.

    Article  Google Scholar 

  37. K.Q. Weinberger, F. Sha, and L.K. Saul: Proc. 21st Int. Conf. Mach. Learn., 2004.

  38. B. Schölkopf, A. Smola, and K.-R. Müller: in Artificial Neural NetworksICANN ’97, W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, eds., Springer, Berlin, 1997, pp. 583–88.

  39. Q. Wang: 2014. arXiv:1207.3538.

  40. N. Shah, M.R. Rahul, S. Bysakh, and G. Phanikumar: Mater. Sci. Eng. A, 2021, vol. 824, p. 141793.

    CAS  Article  Google Scholar 

  41. M.R. Rahul and G. Phanikumar: Mater. Sci. Eng. A, 2020, vol. 777, p. 139022.

    CAS  Article  Google Scholar 

  42. T. Huang, J. Zhang, J. Zhang, and L. Liu: Appl. Sci., 2021, vol. 11, p. 6102.

    CAS  Article  Google Scholar 

Download references

One of the authors (ASB) acknowledges Ujjawal Kumar Jaiswal and Yegi Vamsi Krishna for their help with the algorithm development and for useful discussions. RMR acknowledges Professor G. Phanikumar (Department of Metallurgical and Materials Engineering, IIT, Madras) for providing research facilities and for useful discussions and Naishalkumar Shah for helpful communications.

On behalf of all of the authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Rahul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 95 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bundela, A.S., Rahul, M.R. Application of Machine Learning Algorithms With and Without Principal Component Analysis for the Design of New Multiphase High Entropy Alloys. Metall Mater Trans A 53, 3512–3519 (2022). https://doi.org/10.1007/s11661-022-06764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06764-5