Skip to main content
Log in

Fracture Toughness and Fracture Mechanism of EH47 High-Strength Steel Subjected to Different Temperatures

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of this work was to investigate the effect of temperature on the fracture behavior of EH47 high-strength steel, which is one of the materials used for large ocean freighter decks. The fracture toughness and mechanism were studied using compact tensile (CT) specimens at different temperatures. The results showed that the fracture toughness (characterized by the crack tip opening displacement, CTOD) δ of the EH47 high-strength steel decreased with decreasing temperature and that the average values of the fracture toughness tested at different temperatures followed a Boltzmann distribution. The fracture surface analysis showed that the fracture mechanism changed from ductile fracture (above 0 °C) to ductile–brittle mixed fracture (− 20 °C to − 60 °C) and then to complete brittle fracture (below − 80 °C). In particular, the extension of fibrous cracks was the main factor affecting the fracture toughness in the transition temperature region (− 20 °C to − 60 °C). The distance from the cleavage initiation site to the fibrous crack tip increased with the fibrous crack width. Moreover, the Weibull and Boltzmann distribution functions were combined, a prediction model of the fracture toughness with different temperatures and failure probabilities was proposed, and the predicted results were in good agreement with the test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. T. Kawabata, T. Inoue, T. Tagawa, T. Fukui, Y. Takashima, K. Shibanuma, and S. Aihara: Mar. Struct., 2020, vol. 71, 102737.

    Article  Google Scholar 

  2. S.W. Thompson: Mater. Sci. Eng. A, 2018, vol. 711, pp. 424–33.

    Article  CAS  Google Scholar 

  3. R.V. Penna, L.N. Bartlett, and T. Constance: Int. J. Metalcast., 2019, vol. 13, pp. 286–99.

    Article  CAS  Google Scholar 

  4. M.J. Perez-Martin, B. Erice, and F. Galvez: Eng. Fract. Mech., 2019, vol. 205, pp. 498–510.

    Article  Google Scholar 

  5. F.J. Witt and T.R. Mager: Nucl. Eng. Des., 1971, vol. 17, pp. 91–102.

    Article  Google Scholar 

  6. W.O. Shabbits, W.H. Pryle, and E.T. Wessel: J. Fluid Eng. Trans. ASME, 1971, vol. 93, pp. 231–36.

    Article  Google Scholar 

  7. N.B. Shaw and G.M. Spink: Metall. Mater. Trans. A, 1983, vol. 14A, pp. 751–59.

    Article  Google Scholar 

  8. M. Yamagiwa, M. Nakano, T. Kataoka, K. Azuma, and K. Kishida: Mater. Trans. JIM, 1990, vol. 32, pp. 61–9.

    Article  Google Scholar 

  9. R. Bonadé, P. Mueller, and P. Spätig: Eng. Fract. Mech., 2008, vol. 75, pp. 3985–4000.

    Article  Google Scholar 

  10. P. Mueller, R. Bonadé, and P. Spätig: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 346–49.

    Article  CAS  Google Scholar 

  11. K.H. Lee, M.C. Kim, W.J. Yang, and B.S. Lee: Mater. Sci. Eng. A, 2013, vol. 565, pp. 158–64.

    Article  CAS  Google Scholar 

  12. A. Kumar, S.G. Roberts, and A.J. Wilkinson: Int. J. Fract., 2007, vol. 144, pp. 121–29.

    Article  CAS  Google Scholar 

  13. G.C. Xiao, H.Y. Jing, L.Y. Xu, L. Zhao, and J.C. Ji: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3044–48.

    Article  CAS  Google Scholar 

  14. S.Y. Shin, B. Hwang, S. Kim, and S. Lee: Mater. Sci. Eng. A, 2006, vol. 429, pp. 196–204.

    Article  CAS  Google Scholar 

  15. Z.X. Wang, F. Xue, J. Lu, H.J. Shi, and G.G. Shu: Int. J. Damage Mech., 2010, vol. 19, pp. 611–29.

    Article  Google Scholar 

  16. C.C. Menzemer, T.S. Srivatsan, and R. Ortiz: Mater. Des., 2001, vol. 22, pp. 659–67.

    Article  CAS  Google Scholar 

  17. Y.C. Jang and Y.S. Lee: Eng. Fract. Mech., 2011, vol. 78, pp. 2082–87.

    Article  Google Scholar 

  18. A. Lambert, A.F. Gourgues, and J. Besson: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1039–53.

    Article  Google Scholar 

  19. B. Djordjevic, A. Sedmak, B. Petrovski, and A. Dimic: Eng. Fail. Anal., 2021, vol. 125, 105392.

    Article  CAS  Google Scholar 

  20. A.R. Shen, P.C. Li, G.A. Qian, Z.S. Yu, F. Berto, and W. Wu: Int. J. Press. Ves Pip., 2019, vol. 178, 103999.

    Article  CAS  Google Scholar 

  21. M.W. Wu, Z.J. Lin, C.Y. Lin, S.X. Chi, M.K. Tsai, and K. Ni: Mater. Sci. Eng. A, 2021, vol. 814, 141182.

    Article  CAS  Google Scholar 

  22. W.J. Yang, B.S. Lee, M.Y. Huh, and J.H. Hong: J. Nucl. Mater., 2003, vol. 317, pp. 234–42.

    Article  CAS  Google Scholar 

  23. J.H. Chen, G. Li, R. Cao, and X.Y. Fang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5044–54.

    Article  CAS  Google Scholar 

  24. J.H. Chen, Q. Wang, G.Z. Wang, and Z. Li: Acta Mater., 2003, vol. 51, pp. 1841–55.

    Article  CAS  Google Scholar 

  25. D.S. Liu, M. Luo, B.G. Cheng, R. Cao, and J.H. Chen: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4918–36.

    Article  CAS  Google Scholar 

  26. H.T. Wang, Y. Tian, Q.B. Ye, R.D.K. Misra, Z.D. Wang, and G.D. Wang: Mater. Sci. Eng. A, 2019, vol. 761, 138009.

    Article  CAS  Google Scholar 

  27. P. Spätig, G.R. Odette, and G.E. Lucas: J. Nucl. Mater., 1999, vol. 275, pp. 324–31.

    Article  Google Scholar 

  28. F. Yanagimoto, T. Hemmi, Y. Suzuki, Y. Takashima, T. Kawabata, and K. Shibanuma: Acta Mater., 2019, vol. 177, pp. 96–106.

    Article  CAS  Google Scholar 

  29. T. Iung and A. Pineau: Fatigue Fract. Eng. Mater., 1996, vol. 19, pp. 1369–81.

    Article  Google Scholar 

  30. P. Haušild, I. Nedbal, C. Berdin, and C. Prioul: Mater. Sci. Eng. A, 2002, vol. 335, pp. 164–74.

    Article  Google Scholar 

  31. M. Holzmann, L. Juràšek, and I. Dlouhý: Int. J. Fract., 2007, vol. 148, pp. 13–28.

    Article  CAS  Google Scholar 

  32. R. Cao, G. Li, and X.Y. Fang: Mater. Sci. Eng. A, 2013, vol. 564, pp. 509–24.

    Article  CAS  Google Scholar 

  33. E. Ostby, C. Thaulow, and Z.L. Zhang: Eng. Fract. Mech., 2007, vol. 74, pp. 1770–92.

    Article  Google Scholar 

  34. A.J. Cooper, W.J. Brayshaw, and A.H. Sherry: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 811–16.

    Article  CAS  Google Scholar 

  35. S.R. Yu, Z.G. Yan, R. Cao, and J.H. Chen: Eng. Fract. Mech., 2006, vol. 73, pp. 331–47.

    Article  Google Scholar 

  36. S. Kim, B. Hwang, and S. Lee: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1275–81.

    Article  CAS  Google Scholar 

  37. S. Lee, S. Kim, B. Hwang, B.S. Lee, and C.G. Lee: Acta Mater., 2002, vol. 50, pp. 4755–62.

    Article  CAS  Google Scholar 

  38. J.H. Chen, G.Z. Wang, and H.J. Wang: Acta Mater., 1996, vol. 44, pp. 3979–89.

    Article  CAS  Google Scholar 

  39. G.Z. Wang and J.H. Chen: Int. J. Fract., 2001, vol. 108, pp. 235–50.

    Article  CAS  Google Scholar 

  40. K. Wallin: Eng. Fract. Mech., 1984, vol. 19, pp. 1085–93.

    Article  Google Scholar 

  41. V.S. Barbosa and C. Ruggieri: Int. J. Press. Ves. Pip., 2020, vol. 188, 104228.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports from the Opening project fund of Materials Service Safety Assessment Facilities.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechong Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, C., Yang, M., Liu, P. et al. Fracture Toughness and Fracture Mechanism of EH47 High-Strength Steel Subjected to Different Temperatures. Metall Mater Trans A 53, 3588–3603 (2022). https://doi.org/10.1007/s11661-022-06763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06763-6

Navigation