Skip to main content

Optimized Tribological Performance Deriving From Multiple Strengthening Effects of Fe–Ni–Mo–Cr Alloy

Abstract

The tribological performance of quaternary Fe–13 pct Ni–10 pct Mo–5 pct Cr alloy was modulated by means of electromagnetic levitation (EML) and drop tube (DT) techniques. In both containerless solidification ways, the wear rate and friction coefficient of this alloy decreased to half of their normal values as undercooling increased. Furthermore, at the same undercooling level, the wear rate and friction coefficient of the alloy processed by DT were lower. The optimized tribological property at the EML state was mainly ascribed to the solid solution strengthening of the Mo element in the (αFe) dendrite and the dispersion strengthening by the Fe2Mo phase. The solubility of Mo in the (αFe) phase was extended by approximately 30 pct with enhanced undercooling, and the interdendritic networklike Fe2Mo phase transformed to tiny dotlike structure distributing more uniformly in the alloy matrix. Under the DT condition, the fine-grained reinforcement of the (αFe) phase became the dominant hardening factor. The grain size of the (αFe) dendrite was reduced by more than an order of magnitude, and the Fe2Mo phase disappeared completely within the small alloy droplet. Meanwhile, the solidification pathways relating to these strengthening mechanisms were explored, together with the crystalline structures of the constituent phases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. C. Zhu, J. Zeng, W. Wang, S. Chang, and C. Lu: Mater. Charact., 2020, vol. 170, p. 110679.

    CAS  Article  Google Scholar 

  2. N. Xu, W. Han, Y. Wang, J. Li, and Z. Shan: Acta Mater., 2017, vol. 124, pp. 343–50.

    CAS  Article  Google Scholar 

  3. S. Zhu, Q. Bi, J. Yang, and W. Liu: Tribol. Lett., 2011, vol. 43, pp. 55–63.

    CAS  Article  Google Scholar 

  4. J. Chen, Y. An, J. Yang, X. Zhao, F. Yan, H. Zhou, and J. Chen: Surf. Coat. Technol., 2013, vol. 235, pp. 521–28.

    CAS  Article  Google Scholar 

  5. S. Akamatsu, S. Bottin-Rousseau, G. Faivre, and E. Brener: Phys. Rev. Lett., 2014, vol. 112, p. 105502.

    Article  CAS  Google Scholar 

  6. Y. Li, C. Li, J. Wu, Y. Wu, Z. Ma, L. Yu, H. Li, and Y. Liu: Mater. Lett., 2019, vol. 250, pp. 147–50.

    CAS  Article  Google Scholar 

  7. T. Gancarz, A. Dobosz, A.A. Bogno, G. Cempura, N. Schell, R. Chulist, and H. Henein: Mater. Charact., 2021, vol. 178, p. 111290.

    CAS  Article  Google Scholar 

  8. Y. He, Y. Wu, F. Bu, C. Zou, Z. Bian, Q. Huang, T. Liu, Q. Wang, J. Wang, J. Li, and E. Beaugnon: J. Mater. Sci. Technol., 2021, vol. 93, pp. 79–88.

    CAS  Article  Google Scholar 

  9. S. Kavousi, B.R. Novak, D. Moldovan, and M. Asle-Zaeem: Acta Mater., 2021, vol. 211, p. 116885.

    CAS  Article  Google Scholar 

  10. A.L. Ramirez-Ledesma, J.C. Luna-Manuel, H.F. Lopez, and J.A. Juarez-Islas: Mater. Sci. Eng. A, 2022, vol. 844, p. 143161.

    CAS  Article  Google Scholar 

  11. J. Rodriguez, A. Kreischer, T. Volkmann, and D. Matson: Acta Mater., 2017, vol. 122, pp. 431–37.

    CAS  Article  Google Scholar 

  12. Y.F. Si, H.P. Wang, P. Lü, and B. Wei: Appl. Phys. A, 2019, vol. 125, p. 102.

    Article  CAS  Google Scholar 

  13. W. Löser, T.G. Woodcock, O. Shuleshova, R. Herrmann, H.G. Lindenkreuz, B. Gehrmann, S. Schneider, and T. Volkmann: J. Phys.: Conf. Ser., 2011, vol. 327, p. 012005.

    Google Scholar 

  14. Y.H. Wu, J. Chang, L. Hu, S. Sha, X. Cai, S.S. Xu, and B. Wei: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2975–89.

    Article  CAS  Google Scholar 

  15. L. Cao, R. Cochrane, and A. Mullis: Intermetallics, 2015, vol. 60, pp. 33–44.

    CAS  Article  Google Scholar 

  16. N. Hussain, A.M. Mullis, and N. Haque: Mater. Charact., 2019, vol. 154, pp. 377–85.

    CAS  Article  Google Scholar 

  17. Y. Li, W. Yan, J.D. Cotton, G.J. Ryan, Y. Shen, W. Wang, Y. Shan, and K. Yang: Mater. Des., 2015, vol. 82, pp. 56–63.

    CAS  Article  Google Scholar 

  18. W. Elghazaly, O. Elkady, S. Weiss, and S. Elghazaly: J. Mater. Sci. Eng. A, 2017, vol. 7, pp. 271–79.

    CAS  Google Scholar 

  19. J. Suryawanshi, K.G. Prashanth, and U. Ramamurty: J. Alloys Compd., 2017, vol. 725, pp. 355–64.

    CAS  Article  Google Scholar 

  20. T. Sourmail: Mater. Sci. Technol., 2001, vol. 17, pp. 1–4.

    CAS  Article  Google Scholar 

  21. M. Perricone and J. Dupont: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1267–80.

    CAS  Article  Google Scholar 

  22. S. Ishikawa, T. Matsuo, and M. Takeyama: Mater. Res. Soc. Symp. Proc., 2007, vol. 980, pp. 517–22.

    CAS  Google Scholar 

  23. Y. Yang, L. Tan, and J. Busby: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3900–08.

    Article  CAS  Google Scholar 

  24. J. Zhu, R. Zhao, C. Jiang, and Z. Lai: Mater. Sci. Eng. A, 2009, vol. 516, pp. 201–04.

    Article  CAS  Google Scholar 

  25. W. Xu, D. San Martin, P.E.J. Rivera Díaz del Castillo, and S. van der Zwaag: Mater. Sci. Eng. A, 2007, vol. 467, pp. 24–32.

    Article  CAS  Google Scholar 

  26. C.G. Levi and R. Mehrabian: Metall. Trans. A, 1982, vol. 13A, pp. 221–34.

    CAS  Article  Google Scholar 

  27. E. Lee and S. Ahn: Acta Metall. Mater., 1994, vol. 42, pp. 3231–43.

    CAS  Article  Google Scholar 

  28. M. Sribalaji, O.S. Asiq Rahman, T. Laha, and A.K. Keshri: Mater. Chem. Phys., 2016, vol. 177, pp. 220–28.

    CAS  Article  Google Scholar 

  29. Y.Y. Zhao, Y.X. Ye, C.Z. Liu, R. Feng, K.F. Yao, and T.G. Nieh: Intermetallics, 2019, vol. 113, p. 106561.

    CAS  Article  Google Scholar 

  30. A. Amanov, S. Sasaki, I.-S. Cho, Y. Suzuki, H.-J. Kim, and D.-E. Kim: Mater. Des., 2013, vol. 47, pp. 386–94.

    CAS  Article  Google Scholar 

  31. Y.X. Ye, C.Z. Liu, H. Wang, and T.G. Nieh: Acta Mater., 2018, vol. 147, pp. 78–89.

    CAS  Article  Google Scholar 

  32. Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant: Science, 2007, vol. 316, pp. 433–36.

    CAS  Article  Google Scholar 

  33. S. Pogatscher, H. Antrekowitsch, H. Leitner, A.S. Sologubenko, and P.J. Uggowitzer: Scripta Mater., 2013, vol. 68, pp. 158–61.

    CAS  Article  Google Scholar 

  34. C. Huang, Y. Zhang, R. Vilar, and J. Shen: Mater. Des., 2012, vol. 41, pp. 338–43.

    CAS  Article  Google Scholar 

  35. P. Nautiyal, J. Jain, and A. Agarwal: Tribol. Lett., 2016, vol. 61, p. 29.

    Article  CAS  Google Scholar 

  36. S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia, and B. Wei: Acta Mater., 2014, vol. 69, pp. 355–64.

    CAS  Article  Google Scholar 

  37. M.R. Rahul and G. Phanikumar: Mater. Sci. Eng. A, 2020, vol. 777, p. 139022.

    CAS  Article  Google Scholar 

  38. J. Zhang, X. Li, Y. Zhang, F. Zhang, H. Wu, X.-Z. Wang, Q. Zhou, and H. Wang: Intermetallics, 2020, vol. 119, p. 10s6714.

    Article  CAS  Google Scholar 

  39. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989.

    Google Scholar 

  40. T. Doi, M. Tanimura, and Y. Koyama: Phys. Rev. B, 2008, vol. 77, p. 134205.

    Article  CAS  Google Scholar 

  41. F. Wang, W. Xu, D. Ma, and A. Bührig-Polaczek: J. Alloys Compd., 2019, vol. 792, pp. 505–09.

    CAS  Article  Google Scholar 

  42. D.J. Thoma and J.H. Perepezko: J. Alloys Compd., 1995, vol. 224, pp. 330–41.

    CAS  Article  Google Scholar 

  43. D.D. Risanti and G. Sauthoff: Intermetallics, 2011, vol. 19, pp. 1727–36.

    CAS  Article  Google Scholar 

  44. D. Liang, C. Wei, and F. Ren: Mater. Sci. Eng. A, 2021, vol. 806, p. 140611.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. U1806219, 52073232, 52088101, and U1660108), the Science Fund for Distinguished Young Scholars of Shaanxi Province (Grant No. 2020JC-11), and the Science Fund for Scientific and Technological Innovation Team of Shaanxi Province (Grant No. 2021TD-14). The authors are grateful to Mr. S.S. Xu, Miss S. Sha, and Mr. B.W. Wu for their help with the experiments.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ruan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 359 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L.Y., Ruan, Y. & Wei, B. Optimized Tribological Performance Deriving From Multiple Strengthening Effects of Fe–Ni–Mo–Cr Alloy. Metall Mater Trans A 53, 3573–3587 (2022). https://doi.org/10.1007/s11661-022-06761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06761-8