Skip to main content

Evolution and Removal of Inclusions in Fe-Based Amorphous Alloys

Abstract

Fe-based amorphous alloys generally suffer from deteriorated glass forming ability and soft magnetic properties due to the impurities in industrial raw materials. In this study, the inheritance of impurities from raw materials and evolution of inclusions were systemically investigated in a series of FeB, FeBSi, FeBSiP and FeBSiPNb alloys with an increasing compositional complexity. The Mn, Al, Ti, S, C and Ca impurities in the raw materials were found to form MgO–Al2O3 or composite inclusions with MgO–Al2O3 cores and shells of sulfides, nitrides and carbides in the master alloys, where Mg originated from the MgO crucible or the MgO–B2O3 refining slag. By comparison, the inclusions in as-quenched ribbons were considerably much simpler and smaller, because the high-melting-point MgO–Al2O3 and MgO–Al2O3–SiO2 inclusions are insufficient to grow up and low-melting-point sulfide, carbide and nitride inclusions will not precipitate during the rapid solidification. During refining, these high-melting-point inclusions were generally removed via a flotation-absorption process, and the Mn, Ti, S impurities in the melt diffused to the refining slag and were removed via steel-slag interface reactions. These findings are of paramount importance for developing suitable refining process to alleviate the detrimental effects of impurities in Fe-based amorphous alloys and facilitate the industrial production of high-performance soft magnetic materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Y. Wang, Z. Wen, X. Cao, Z. Zheng, and J. Xu: Sci. Total Environ., 2020, vol. 707, p. 135903.

    CAS  Article  Google Scholar 

  2. Y.T. Cheng, Q. Hao, J.M. Pelletier, E. Pineda, and J.C. Qiao: Int. J. Plast., 2021, vol. 146, p. 103107.

    CAS  Article  Google Scholar 

  3. J.M. Silveyra, E. Ferrara, D.L. Huber, and T.C. Monson: Science, 2018, vol. 362, p. 6413.

    Article  Google Scholar 

  4. K. Tao, J.C. Qiao, Q.F. He, K.K. Song, and Y. Yang: Int. J. Mech. Sci., 2021, vol. 201, p. 106469.

    Article  Google Scholar 

  5. W. Yang, Q. Wang, H. Ling, H. Liu, L. Xue, Y. He, Q.B. Li: J. Alloys Comd., 2019, vol. 773, pp. 401–12.

  6. H.X. Li, J.E. Gao, S.L. Wang, S. Yi, and Z.P. Lu: Metall. Mater. Trans. A, 2011, vol. 43A, pp. 2615–19.

    Google Scholar 

  7. Y. Cai, H. Ling, and T. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2484–89.

    Article  Google Scholar 

  8. J. Pang, A. Wang, S. Yue, F. Kong, K. Qiu, C. Chang, X. Wang, and C.-T. Liu: J. Magn. Magn. Mater., 2017, vol. 433, pp. 25–41.

    Article  Google Scholar 

  9. E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius, L. Schultz, G. Herzer, and R. Schäfer: Acta Mater., 2015, vol. 96, pp. 10–17.

    CAS  Article  Google Scholar 

  10. Y. Geng, Y. Wang, Y. Wang, Z. Zhang, H. Ju, L. Yu, and J. Xu: Met. Mater. Int., 2020, vol. 27, pp. 4886–93.

    Article  Google Scholar 

  11. Q. Yu, X.D. Wang, H.B. Lou, Q.P. Cao, and J.Z. Jiang: Acta Mater., 2016, vol. 102, pp. 116–24.

    CAS  Article  Google Scholar 

  12. Y. Geng, Y. Wang, Z. Wang, J. Qiang, H. Wang, C. Dong, and O. Tegus: Mater. Des., 2016, vol. 106, pp. 69–73.

    CAS  Article  Google Scholar 

  13. Z.P. Lu, C.T. Liu, and W.D. Porter: Appl. Phys. Lett., 2003, vol. 83, pp. 2581–83.

    CAS  Article  Google Scholar 

  14. F. Kong, S. Yue, R. Li, A.D. Wang, and C.T. Liu: Intermetallics, 2021, vol. 136, p. 107278.

    CAS  Article  Google Scholar 

  15. L. Xie, T. Liu, A. He, Q. Li, Z. Gao, A. Wang, C. Chang, X. Wang, and C.T. Liu: J. Mater. Sci., 2017, vol. 53, pp. 1437–46.

    Article  Google Scholar 

  16. Y. Wu, L. Sun, X. Li, P. Shao, K. Song, S. Wang, L. Wang, and S. Zhou: J. Magn. Magn. Mater., 2021, vol. 528, p. 167825.

    CAS  Article  Google Scholar 

  17. W. Yang, C. Wan, H. Liu, Q. Li, Q. Wang, H. Li, J. Zhou, L. Xue, B. Shen, and A. Inoue: Mater. Des., 2017, vol. 129, pp. 63–68.

    CAS  Article  Google Scholar 

  18. Q. Li and S. Yi: Met. Mater. Int., 2014, vol. 20, pp. 7–11.

    Article  Google Scholar 

  19. Q. Li, Z. Xia, Y. Guo, Z. Shen, T. Zheng, B. Ding, and Y. Zhong: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 5135–39.

    Article  Google Scholar 

  20. Z. Liu, G. Song, Z. Deng, and M. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1243–54.

    Article  Google Scholar 

  21. P. Wang, C. Li, L. Wang, J. Zhang, and Z. Xue: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2056–71.

    Article  Google Scholar 

  22. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528–36.

    CAS  Article  Google Scholar 

  23. Q. Shu, V.-V. Visuri, T. Alatarvas, and T. Fabritius: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2905–16.

    Article  Google Scholar 

  24. L. Zhang and W. Pluschkell: Iron Steelmak., 2013, vol. 30, pp. 106–10.

    Article  Google Scholar 

  25. Y. Zhao, G. Wang, D. Shang, H. Lei, Q. Wang, and L. Cao: Steel. Res. Int., 2018, vol. 89, p. 1800255.

    Article  Google Scholar 

  26. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    CAS  Article  Google Scholar 

  27. Z. Deng, L. Cheng, L. Chen, and M. Zhu: Steel. Res. Int., 2019, vol. 90, p. 1900268.

    CAS  Article  Google Scholar 

  28. M.H. Lee and J.H. Park: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 877–93.

    Article  Google Scholar 

  29. C. Xuan, E.S. Persson, R. Sevastopolev, and M. Nzotta: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1957–73.

    Article  Google Scholar 

  30. G. Shannon, L. White, and S. Sridhar: Mater. Sci. Eng. A., 2008, vol. 495, pp. 310–15.

    Article  Google Scholar 

  31. P. Ni, T. Tanaka, M. Suzuki, M. Nakamoto, and P.G. Jönsson: ISIJ Int., 2019, vol. 59, pp. 737–48.

    CAS  Article  Google Scholar 

  32. M. Fujikura, H. Sawairi, and T. Sato: J. Magn. Magn. Mater., 1996, vol. 160, pp. 289–90.

    CAS  Article  Google Scholar 

  33. X. Li, J. Liu, C. Qu, K. Song, and L. Wang: J. Alloys. Comd., 2017, vol. 694, pp. 643–46.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52174217) and China Postdoctoral Science Foundation (Grant No. 2020M682495).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Liu or Hong-Wei Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Mo, S., Yang, L. et al. Evolution and Removal of Inclusions in Fe-Based Amorphous Alloys. Metall Mater Trans A 53, 3565–3572 (2022). https://doi.org/10.1007/s11661-022-06749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06749-4