Skip to main content

Advertisement

Log in

High-Entropy-Alloy CoFeNiCr Bonded WC-Based Cemented Carbide Prepared by Spark Plasma Sintering

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A WC-based cermet bonded by high-entropy-alloy CoFeNiCr was successfully fabricated by spark plasma sintering. The densification behavior, phase constitution, microstructure and mechanical properties of WC-CoFeNiCr/Co composites were investigated. After 5 minutes sintering at 1200 °C, the high-entropy-alloy CoFeNiCr binder retains an fcc structure without reacting with WC, and the WC-CoFeNiCr specimens show dense microstructure. At room temperature, the WC-10 wt pct CoFeNiCr specimen possesses hardness and fracture toughness of HV30 18.95 GPa and 15.88 MPa·m1/2, which are 11.6 and 7.6 pct higher than those of the WC-10 wt pct Co specimen. Especially at 600 °C, the WC-CoFeNiCr specimen has superior hardness, which is 29 pct higher than that of the WC-Co. The high softening resistance of the WC-CoFeNiCr composite at elevated temperature should be mainly attributable to the diffusion retardation of the CoCrFeNi binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Warren and M.B. Waldron: Powder Metall., 1972, vol. 15, pp. 166–80.

    Article  CAS  Google Scholar 

  2. A.J. Ardell: Acta Mater., 1972, vol. 20, pp. 601–09.

    Article  Google Scholar 

  3. I. Konyashin, A.A. Zaitsev, D. Sidorenko, E.A. Levashov, B. Ries, S.N. Konischev, M. Sorokin, A.A. Mazilkin, M. Herrmann, and A. Kaiser: Int. J. Refract. Met. Hard Mater., 2017, vol. 62, pp. 134–48.

    Article  CAS  Google Scholar 

  4. S. Imasato, K. Tokumoto, T. Kitada, and S. Sakaguchi: Int. J. Refract. Met. Hard Mater., 1995, vol. 13, pp. 305–12.

    Article  CAS  Google Scholar 

  5. J. Long, Z. Zhang, T. Xu, and B. Lu: Int. J. Refract. Met. Hard Mater., 2013, vol. 40, pp. 2–7.

    Article  CAS  Google Scholar 

  6. H.Y. Rong, Z.J. Peng, X.Y. Ren, Y. Peng, C.B. Wang, Z.Q. Fu, L.H. Qi, and H.H. Miao: Mater. Sci. Eng. A, 2012, vol. 532, pp. 543–47.

    Article  CAS  Google Scholar 

  7. B.L. Ezquerra, L. Lozada, H. van den Berg, M. Wolf, and J.M. Sanchez: Int. J. Refract. Met. Hard Mater., 2018, vol. 72, pp. 89–96.

    Article  CAS  Google Scholar 

  8. Y. Gao, B.H. Luo, K.J. He, H.B. Jing, Z.H. Bai, W. Chen, and W.W. Zhang: Vacuum, 2017, vol. 143, pp. 271–82.

    Article  CAS  Google Scholar 

  9. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  10. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  11. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu: Science, 2018, vol. 362, pp. 933–37.

    Article  CAS  Google Scholar 

  12. S. Praveen, B.S. Murty, and R.S. Kottada: Mater. Sci. Eng. A, 2012, vol. 534, pp. 83–89.

    Article  CAS  Google Scholar 

  13. L. Liu, J.B. Zhu, C. Zhang, J.C. Li, and Q. Jiang: Mater. Sci. Eng. A, 2012, vol. 548, pp. 64–68.

    Article  CAS  Google Scholar 

  14. W.-R. Wang, W.-L. Wang, and J.-W. Yeh: J. Alloys Comp., 2014, vol. 589, pp. 143–52.

    Article  CAS  Google Scholar 

  15. C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, and J.-W. Yeh: Intermetallics, 2015, vol. 62, pp. 76–83.

    Article  CAS  Google Scholar 

  16. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Intermetallics, 2011, vol. 19, pp. 698–706.

    Article  CAS  Google Scholar 

  17. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward: J. Mater. Sci., 2012, vol. 47, pp. 4062–74.

    Article  CAS  Google Scholar 

  18. G. Zhu, Y. Liu, and J.W. Ye: Mater. Lett., 2013, vol. 113, pp. 80–82.

    Article  CAS  Google Scholar 

  19. Z. Fu and R. Koc: J. Am. Ceram. Soc., 2017, vol. 100, pp. 2803–13.

    Article  CAS  Google Scholar 

  20. C.S. Chen, C.C. Yang, H.Y. Chai, J.W. Yeh, and J.L.H. Chau: Int. J. Refract. Met. Hard Mater., 2014, vol. 43, pp. 200–04.

    Article  CAS  Google Scholar 

  21. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia: Acta Mater., 2016, vol. 107, pp. 59–71.

    Article  CAS  Google Scholar 

  22. D.H. Zheng, X.Q. Li, Y.Y. Li, S.G. Qu, and C. Yang: J. Alloys Comp., 2013, vol. 572, pp. 62–67.

    Article  CAS  Google Scholar 

  23. K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett., 1982, vol. 1, pp. 13–16.

    Article  CAS  Google Scholar 

  24. B. Liu, J. Wang, Y. Liu, Q. Fang, Y. Wu, S. Chen, and C.T. Liu: Intermetallics, 2016, vol. 75, pp. 25–30.

    Article  CAS  Google Scholar 

  25. Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh: J. Alloys Comp., 2009, vol. 488, pp. 57–64.

    Article  CAS  Google Scholar 

  26. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu: Intermetallics, 2015, vol. 60, pp. 1–8.

    Article  CAS  Google Scholar 

  27. Y. Park, N. Hwang, and D. Yoon: MMTA, 1996, vol. 27, pp. 2809–19.

    Article  Google Scholar 

  28. D.Y. Yang, D.Y. Yoon, and S.J.L. Kang: J. Am. Ceram. Soc., 2011, vol. 94, pp. 1019–24.

    Article  CAS  Google Scholar 

  29. D.H. Zheng, X.Q. Li, Y.Y. Li, S.G. Qu, and C. Yang: Mater. Sci. Eng. A, 2013, vol. 561, pp. 445–51.

    Article  CAS  Google Scholar 

  30. J. Ferreira, M. Amaral, F. Antunes, and J. Costa: Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 1–8.

    Article  CAS  Google Scholar 

  31. J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, and J.-W. Yeh: J. Alloys Comp., 2016, vol. 674, pp. 455–62.

    Article  CAS  Google Scholar 

  32. C. Tsai, M. Tsai, and J.-W. Yeh: Acta Mater., 2013, vol. 61, pp. 4887–97.

    Article  CAS  Google Scholar 

  33. A. Mehta and Y. Sohn: Mater. Res. Lett., 2021, vol. 9, pp. 239–46.

    Article  CAS  Google Scholar 

  34. J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, and M. Danielewski: J. Alloys Comp., 2019, vol. 783, pp. 193–207.

    Article  CAS  Google Scholar 

  35. M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, and S.V. Divinski: J. Alloys Comp., 2016, vol. 688, pp. 994–1001.

    Article  CAS  Google Scholar 

  36. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski: Acta Mater., 2018, vol. 146, pp. 211–24.

    Article  CAS  Google Scholar 

  37. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski: Sci. Rep., 2017, vol. 7, p. 12293.

    Article  CAS  Google Scholar 

  38. S.V. Divinski, A.V. Pokoev, E. Neelamegan, and P.J.D.F. Aloke: Diffus. Found., 2018, vol. 17, pp. 69–104.

    Article  CAS  Google Scholar 

  39. D. Prokoshkina, V.A. Esin, G. Wilde, and S.V. Divinski: Acta Mater., 2013, vol. 61, pp. 5188–97.

    Article  CAS  Google Scholar 

  40. S. Frank and C. Herzig: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 882–88.

    Article  Google Scholar 

  41. S.V. Divinski, G. Reglitz, and G. Wilde: Acta Mater., 2010, vol. 58, pp. 386–95.

    Article  CAS  Google Scholar 

  42. J.H. Westbeook: J. Electrochem. Soc., 1956, vol. 103, p. 54.

    Article  Google Scholar 

  43. G. Sharma, R.V. Ramanujan, T.R.G. Kutty, and G.P. Tiwari: Mater. Sci. Eng. A, 2000, vol. 278, pp. 106–12.

    Article  Google Scholar 

  44. K.B. Khan, T.R.G. Kutty, and M.K. Surappa: Mater. Sci. Eng. A, 2006, vol. 427, pp. 76–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This topic of research was financed by Joint Funds of Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110956), Guangdong Ordinary Universities Youth Innovative Talents Project (No. 2020KQNCX085), the Scientific Research Foundation of Advanced Talents (Innovation Team) (DGUT, No. KCYCXPT2016004) and Zhongshi Metal Limited-liability Company Doctor Workstation [DGUT, No. 186100030019 (GC200104-42)].

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D. High-Entropy-Alloy CoFeNiCr Bonded WC-Based Cemented Carbide Prepared by Spark Plasma Sintering. Metall Mater Trans A 53, 2724–2729 (2022). https://doi.org/10.1007/s11661-022-06701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06701-6

Navigation