Skip to main content
Log in

Corrosion Fatigue-Cracking Behaviors of Low Alloy Steels in Seawater for Offshore Engineering Structures

  • Topical Collection: 2021 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The fatigue crack growth (FCG) properties of offshore engineering structural steel DH36Z35 were studied in air and an artificial seawater environment. Results show that the FCG rate in seawater is up to 134.5 pct higher than in air. The test results of FCG rate in air and seawater at different frequencies show that FCG in seawater is accelerated compared with that in air at frequencies below 7 Hz. The lower the frequency, the more obvious the acceleration. It is found that the larger the seawater flow rate, the larger the corrosion fatigue crack growth (CFCG) rate. Compared with static seawater, when the flow rate reaches 180 L/h, the average increase of CFCG is about 55.6 pct. In addition, the mechanism by which corrosion accelerates fatigue crack propagation is analyzed from three different perspectives: corrosion product morphology, crack propagation path and corrosion electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. O. Adedipe, F. Brennan, and A. Kolios: Renew. Sustain. Energy Rev., 2016, vol. 61, pp. 141–54.

    Article  Google Scholar 

  2. T.L. Zhao, Z.Y. Liu, C.W. Du, C.D. Dai, X.G. Li, and B.W. Zhang: Mater. Sci. Eng. A., 2017, vol. 708, pp. 181–92.

    Article  CAS  Google Scholar 

  3. H.C. Ma, J.B. Zhao, Y. Fan, Y.H. Huang, Z.Y. Liu, C.W. Du, and X.G. Li: Int. J. Fatigue., 2020, vol. 137, p. 105666.

    Article  CAS  Google Scholar 

  4. H.P. Seifert and S. Ritter: Corros. Sci., 2008, vol. 50, pp. 1884–99.

    Article  CAS  Google Scholar 

  5. D.H. Kang, J.K. Lee, and T.W. Kim: Eng. Fail. Anal., 2011, vol. 18, pp. 557–63.

    Article  CAS  Google Scholar 

  6. X.Y. Wang, Y.F. Han, X. Su, S.P. Li, G.F. Huang, J.W. Mao, and W.J. Lu: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 1212–31.

    Article  CAS  Google Scholar 

  7. R.L. Holtz, P.S. Pao, R.A. Bayles, T.M. Longazel, and R. Goswami: Metall. Mater. Trans. A., 2012, vol. 43A, pp. 2839–49.

    Article  CAS  Google Scholar 

  8. S.C. Wu, C.H. Li, Y. Luo, H.O. Zhang, and G.Z. Kang: Int. J. Fatigue., 2020, vol. 131, p. 105324.

    Article  Google Scholar 

  9. S.C. Wu, S.Q. Zhang, and Z.W. Xu: Int. J. Fatigue., 2016, vol. 87, pp. 359–69.

    Article  CAS  Google Scholar 

  10. T. Shinko, G. Hénaff, D. Halm, G. Benoit, and H. Bahsoun: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 4313–26.

    Article  CAS  Google Scholar 

  11. D. Malhotra and A.S. Shahi: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 1647–64.

    Article  CAS  Google Scholar 

  12. S.C. Wu, Y.X. Liu, C.H. Li, G.Z. Kang, and S.L. Liang: Eng. Fract. Mech., 2018, vol. 197, pp. 176–91.

    Article  Google Scholar 

  13. S.C. Wu, Y.N. Hu, H. Duan, C. Yu, and H.S. Jiao: Int. J. Fatigue., 2016, vol. 91, pp. 1–10.

    Article  CAS  Google Scholar 

  14. Y. Nakai and Y. Yoshioka: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 1792–8.

    Article  CAS  Google Scholar 

  15. D.K. Matlock, G.R. Edwards, D.L. Olson, and S. Ibarra: J. Mater. Eng., 1987, vol. 9, pp. 25–34.

    Article  CAS  Google Scholar 

  16. O. Adedipe, F. Brennan, and A. Kolios: Mar. Struct., 2015, vol. 42, pp. 115–36.

    Article  Google Scholar 

  17. H.P. Seifert and S. Ritter: Corros. Sci., 2016, vol. 108, pp. 148–59.

    Article  CAS  Google Scholar 

  18. H.C. Wu, B. Yang, Y.Z. Shi, Q. Gao, and Y.Q. Wang: J. Mater. Sci. Technol., 2015, vol. 31, pp. 1144–50.

    Article  CAS  Google Scholar 

  19. S. Beretta, M. Carboni, G. Fiore, and A.L. Conte: Int. J. Fatigue., 2010, vol. 32, pp. 952–61.

    Article  CAS  Google Scholar 

  20. S. Beretta, A.L. Conte, J. Rudlin, and D. Panggabean: Eng. Fail Anal., 2015, vol. 47, pp. 252–64.

    Article  CAS  Google Scholar 

  21. C.M. Tseng, H.Y. Liou, and W.T. Tsai: Mater. Sci. Eng. A., 2003, vol. 344, pp. 190–200.

    Article  Google Scholar 

  22. X.Q. Meng, Z.Y. Lin, and F.F. Wang: Mater. Des., 2013, vol. 51, pp. 683–7.

    Article  CAS  Google Scholar 

  23. A.M. Langoy and S.R. Stock: Metall. Mater. Trans. A., 2001, vol. 32, pp. 2297–313.

    Article  Google Scholar 

  24. I.M. Dmytrakh, R.L. Leshchak, and A.M. Syrotyuk: Int. J. Fatigue., 2019, vol. 128, p. 105192.

    Article  CAS  Google Scholar 

  25. S.E.G. Dorman, T.A. Reid, B.K. Hoff, D.H. Henning, and S.E. Collins: Eng. Fract. Mech., 2015, vol. 137, pp. 56–63.

    Article  Google Scholar 

  26. A. Chemina, D. Spinellia, W.B. Filhoa, and C. Rucherta: Procedia Eng., 2015, vol. 101, pp. 85–92.

    Article  CAS  Google Scholar 

  27. D.H. Kang, J.K. Lee, and T.W. Kima: Procedia Eng., 2011, vol. 10, pp. 1170–75.

    Article  CAS  Google Scholar 

  28. S. Yang, H.Q. Yang, G. Liu, Y. Huang, and L.D. Wang: Int. J. Fatigue., 2016, vol. 88, pp. 88–95.

    Article  CAS  Google Scholar 

  29. C.Q. Wang, J.J. Xiong, R.A. Shenoi, M.D. Liu, and J.Z. Liu: Int J Fatigue., 2016, vol. 83, pp. 280–87.

    Article  CAS  Google Scholar 

  30. S. Gkatzogiannisa, J. Weinertb, I. Engelhardtb, P. Knoedela, and T. Ummenhofera: Int. J. Fatigue., 2019, vol. 126, pp. 90–102.

    Article  CAS  Google Scholar 

  31. M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, and H. Uchida: Corros. Sci., 2005, vol. 47, pp. 2492–98.

    Article  CAS  Google Scholar 

  32. J.Y. Hu, S.A. Cao, L. Yin, and Y. Gao: Anti-Corros. Method M., 2014, vol. 61(3), pp. 139–45.

    Article  CAS  Google Scholar 

  33. O. Adedipe, F. Brennan, and A. Kolios: Fatigue Fract. Eng. M., 2016, vol. 39, pp. 395–411.

    Article  Google Scholar 

  34. Y.T. Ma, Y. Li, and F.H. Wang: Mater. Chem. Phys., 2008, vol. 112, pp. 844–52.

    Article  CAS  Google Scholar 

  35. V. Igwemezie, P. Dirisu, and A. Mehmanparast: Mater. Sci. Eng. A., 2019, vol. 754, pp. 750–65.

    Article  CAS  Google Scholar 

  36. V. Igwemezie, A. Mehmanparast, and F. Brennan: Mater. Sci. Eng. A., 2021, vol. 803, p. 140470.

    Article  CAS  Google Scholar 

  37. X.L. Wen, P.P. Bai, B.W. Luo, S.Q. Zheng, and C.F. Chen: Corros. Sci., 2018, vol. 139, pp. 124–40.

    Article  CAS  Google Scholar 

  38. M.R. Stoudt and R.E. Ricker: Metall. Mater. Trans .A., 2004, vol. 35A, pp. 2427–37.

    Article  CAS  Google Scholar 

  39. F. Menan and G. Henaff: Int. J. Fatigue., 2009, vol. 31(11), pp. 1684–95.

    Article  CAS  Google Scholar 

  40. X.X. Xu, H.L. Cheng, W. Wu, Z.Y. Liu, and X.G. Li: Corros. Sci., 2021, vol. 191, p. 109760.

    Article  CAS  Google Scholar 

  41. Y. Li, Z.Y. Liu, E. Fan, Y.H. Huang, Y. Fan, and B.J. Zhao: J. Mater. Sci. Technol., 2021, vol. 64, pp. 141–52.

    Article  CAS  Google Scholar 

  42. F. Menan and G. Henaff: Mater. Sci. Eng. A., 2009, vol. 519, pp. 70–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant Nos.51871172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Liu, J., Wu, S. et al. Corrosion Fatigue-Cracking Behaviors of Low Alloy Steels in Seawater for Offshore Engineering Structures. Metall Mater Trans A 53, 2369–2382 (2022). https://doi.org/10.1007/s11661-022-06693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06693-3

Navigation