Skip to main content
Log in

Tensile Deformation Modeling of a Homogenized Cast Alloy 625: Effects of Large Grain Size

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, tensile deformation behavior of a coarse-grained (> 1 mm) cast alloy 625 has been investigated by applying empirical and physics-based models. The experimental stress-strain data of the alloy at different deformation temperatures are acquired from uniaxial tensile testing up to 700 °C. The plastic strain region of the alloy’s flow stress (σ) curve shows a significant deviation from the traditional Holloman equation. Parallelly, a distinctive hump in the strain-hardening (θ) curve is also observed after the initial steep drop. Dislocation density-based phenomenological modeling is adopted to ascertain the mechanisms governing plastic deformation of the alloy. The hump in strain-hardening curve is related to the combined effects of low-stacking fault energy of the material and large size grains, which led to deform the material with a smooth transition from restricted single slip at onset of plastic deformation to duplex slip and finally to multiple slips at later stages. As the deformation progresses, this transition results in a smooth exponential drop in the dislocation mean-free path. Transition in slip activity is confirmed through SEM and TEM studies. Further, when the deformation temperature increases, there is an increase in the rate of dynamic recovery and the rate at which single- → multiple-slip transition attains. The microstructural studies of the tensile-fractured samples indicate that the carbide/matrix and carbide/grain boundary interfaces play a crucial role in crack nucleation and propagation during the deformation. Notch tensile testing revealed that introducing a stress raiser would localize the strain and can cause dislocations to glide with a lowered initial mean-free path on multiple-slip systems from the very beginning of plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Di Gianfrancesco: Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, 2017.

  2. T.M. Pollock and S. Tin: J. Propuls. Power., 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  3. S. Floreen, G.E. Fuchs, and W.J. Yang: in Superalloys 718,625,706 and Various Derivatives, 1994, pp. 13–37.

  4. H.L. Eiselstein and D.J. Tillack: in Superalloys 718,625 and Various Derivatives, 1991, pp. 1–14.

  5. L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 2963–82.

    Article  Google Scholar 

  6. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: in Superalloys 718,625,706 and Various Derivatives, 1997, pp. 367–78.

  7. V. Shankar, K. Bhanu Sankara Rao, and S.L. Mannan: J. Nucl. Mater., 2001, vol. 288, pp. 222–32.

    Article  CAS  Google Scholar 

  8. D. Liu, X. Zhang, X. Qin, and Y. Ding: Mater. Sci. Technol., 2017, vol. 33, pp. 1610–17.

    Article  CAS  Google Scholar 

  9. C.A. Badrish, N. Kotkunde, G. Mahalle, S.K. Singh, and K. Mahesh: J. Mater. Eng. Perform., 2019, vol. 28, pp. 7537–53.

    Article  CAS  Google Scholar 

  10. X. Wang, Y. Ding, Y. Gao, Y. Ma, J. Chen, and B. Gan: Mater. Sci. Eng. A., 2021, vol. 823, p. 141739.

    Article  CAS  Google Scholar 

  11. Y. Gao, Y. Ding, J. Chen, J. Xu, Y. Ma, and X. Wang: Mater. Sci. Eng. A., 2019, vol. 767, p. 138361.

    Article  CAS  Google Scholar 

  12. V. Shankar, M. Valsan, K.B.S. Rao, and S.L. Mannan: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 3129–39.

    Article  CAS  Google Scholar 

  13. P. Maj, J. Zdunek, J. Mizera, K.J. Kurzydlowski, B. Sakowicz, and M. Kaminski: Met. Mater. Int., 2017, vol. 23, pp. 54–67.

    Article  CAS  Google Scholar 

  14. M.M. De Oliveira, A.A. Couto, G.F.C. Almeida, D.A.P. Reis, N.B. De Lima, and R. Baldan: Metals., 2019, vol. 9, p. 301.

    Article  Google Scholar 

  15. X. Liu, J. Fan, P. Zhang, J. Xie, F. Chen, D. Liu, R. Yuan, B. Tang, H. Kou, and J. Li: J. Alloys Compd., 2021, vol. 869, p. 159342.

    Article  CAS  Google Scholar 

  16. F. Yang, J. Hou, C. Wang, and L. Zhou: Trans. Nonferr. Met. Soc. China., 2021, vol. 31, pp. 426–37.

    Article  CAS  Google Scholar 

  17. A.H.V. Pavan, R.L. Narayan, M. Swamy, K. Singh, and U. Ramamurty: Mater. Sci. Eng. A., 2020, vol. 793, p. 139811.

    Article  CAS  Google Scholar 

  18. A.K. Godasu, U. Prakash, and S. Mula: J. Alloys Compd., 2020, vol. 844, p. 156200.

    Article  CAS  Google Scholar 

  19. G.E. Dieter and D. Bacon: Mechanical Metallurgy, 3rd ed. McGraw-Hill Book Company, New York, 1988.

    Google Scholar 

  20. A.H. Cottrell: Dublin Philos. Mag. J. Sci., 1953, vol. 44, pp. 829–32.

    Article  CAS  Google Scholar 

  21. P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653–63.

    Article  Google Scholar 

  22. M.C.C. In Sup Kim: Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 205–12.

    Article  Google Scholar 

  23. B. Max, J. San Juan, M.L. Nó, J.M. Cloue, B. Viguier, and E. Andrieu: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 2057–68.

    Article  Google Scholar 

  24. R.W. Hayes: Acta Metall., 1983, vol. 31, pp. 365–71.

    Article  CAS  Google Scholar 

  25. D.C. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825–28.

    Article  CAS  Google Scholar 

  26. B.K. Choudhary, E. Isaac Samuel, K. Bhanu Sankara Rao, and S.L. Mannan: Mater. Sci. Technol., 2001, vol. 17, pp. 223–31.

    Article  CAS  Google Scholar 

  27. R. Abbaschian and R.E. Reed-Hill: Physical Metallurgy Principles, 4th ed. Cengage Learning, Boston, 2009.

    Google Scholar 

  28. K. Levenberg: Q. Appl. Math., 1944, vol. 2, pp. 164–68.

    Article  Google Scholar 

  29. N.P. Gurao and S. Suwas: Mater. Lett., 2013, vol. 99, pp. 81–85.

    Article  CAS  Google Scholar 

  30. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, New York, 1993.

    Google Scholar 

  31. C.L. Yang, Z.J. Zhang, T. Cai, P. Zhang, and Z.F. Zhang: Sci. Rep., 2015, vol. 5(1), pp. 1–7.

    Google Scholar 

  32. A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier, Amsterdam, 2004.

    Google Scholar 

  33. H. Ding, H. Ding, D. Song, Z. Tang, and P. Yang: Mater. Sci. Eng. A., 2011, vol. 528, pp. 868–73.

    Article  Google Scholar 

  34. M.C. Mcgrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 4634–43.

    Article  Google Scholar 

  35. G.I. Taylor: Proc. R. Soc. Lond., 1934, vol. 145, pp. 362–87.

    CAS  Google Scholar 

  36. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  37. Y. Estrin and L.P. Kubin: Acta Metall., 1986, vol. 34, pp. 2455–64.

    Article  Google Scholar 

  38. F. Barlat, M.V. Glazov, J.C. Brem, and D.J. Lege: Int. J. Plast., 2002, vol. 18, pp. 919–39.

    Article  CAS  Google Scholar 

  39. G.K. Batchelor: The Scientific Papers of Sir G.I.Taylor. Mechanics of Solids., Vol. 1. Cambridge University Press, Cambridge, 1958.

  40. W. Mao: Front. Mater. Sci., 2016, vol. 10, pp. 335–45.

    Article  Google Scholar 

  41. S. Mishra, M. Yadava, K.N. Kulkarni, and N.P. Gurao: Acta Mater., 2019, vol. 178, pp. 99–113.

    Article  CAS  Google Scholar 

  42. C. Keller and E. Hug: Int. J. Plast., 2017, vol. 98, pp. 106–22.

    Article  CAS  Google Scholar 

  43. M. Kamaya: Mater. Charact., 2012, vol. 66, pp. 56–67.

    Article  CAS  Google Scholar 

  44. J.F. Baker and C.F. Tipper: Proc. Inst. Mech. Eng., 1956, vol. 170, pp. 65–93.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding by the Science and Engineering Research Board, Government of India, through Grant No. CRG/2019/000949 and the support of the material from MIDHANI LTD., Hyderabad, India. The authors are also thankful to the Head of the Metallurgical and Materials Engineering Department, IIT Roorkee, for permitting use of different experimental facilities.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhrit Mula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godasu, A.K., Mishra, S., Prakash, U. et al. Tensile Deformation Modeling of a Homogenized Cast Alloy 625: Effects of Large Grain Size. Metall Mater Trans A 53, 2239–2258 (2022). https://doi.org/10.1007/s11661-022-06666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06666-6

Navigation