Skip to main content
Log in

Microstructure, Texture, and Hardness Evolution of Cold-Rolled High-Purity Ti Sheet During Annealing at 350 °C to 550 °C

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural, textural, and hardness evolution of a cold-rolled high-purity Ti sheet (50 pct reduction in thickness) during isochronal annealing at 350 °C to 550 °C was investigated by jointly using electron backscatter diffraction, electron channel contrast imaging, X-ray diffraction, and hardness test, with a dedicated correlation analysis between them performed. Results show that recrystallization nucleation starts at 400 °C with prior grain boundaries as preferential sites while fully recrystallized structures were obtained after annealing at 550 °C for 1 hours. During the primary recrystallization, contrary to earlier reports, considerable textural changes occur: the prior bimodal basal texture characteristic is essentially replaced by a ring-like basal texture. Such a textural change is attributed to the orientation-gradient-related subgrain coalescence mechanism that dominates the recrystallization nucleation of the high-purity Ti sheet. Specimen hardness always decreases with increasing the annealing temperature (from 234.3 ± 5.8 to 135.9 ± 2.9 HV), which is closely related to continuous variations of grain sizes and dislocation densities (mainly stored in low-angle boundaries). Quantitative analyses reveal that both grain sizes and dislocation densities have mild effects on the hardness change when annealed below 450 °C. However, the decrease in dislocation density leads to more significant softening than grain coarsening when the annealing temperature exceeds 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Banerjee and J.C. Williams: Acta Mater., 2013, vol. 61, pp. 844–79.

    Article  CAS  Google Scholar 

  2. J. Dai, J. Xia, L. Chai, K.L. Murty, N. Guo, and M.R. Daymond: J. Mater. Sci., 2020, vol. 55, pp. 8346–62.

    Article  CAS  Google Scholar 

  3. J.M. Cordeiro and V.A.R. Barao: Mater. Sci. Eng. C., 2017, vol. 71, pp. 1201–15.

    Article  CAS  Google Scholar 

  4. M.-S. Lee, M.-K. Ji, Y.-T. Hyun, E.-Y. Kim, and T.-S. Jun: Mater. Charact., 2021, vol. 172, p. 110834.

    Article  CAS  Google Scholar 

  5. S. Zhao, R. Zhang, Q. Yu, J. Ell, R.O. Ritchie, and A.M. Minor: Science., 2021, vol. 373, pp. 1363–68.

    Article  CAS  Google Scholar 

  6. A. Ghosh: Int. J. Fatigue., 2019, vol. 120, pp. 12–22.

    Article  CAS  Google Scholar 

  7. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, and S.L. Semiatin: Acta Mater., 2013, vol. 61, pp. 1167–78.

    Article  CAS  Google Scholar 

  8. J. Dai, L. Zeng, Z. Li, L. Chai, Z. Zheng, H. Wu, K.L. Murty, and N. Guo: Sci. China Technol. Sci., 2019, vol. 62, pp. 1968–75.

    Article  CAS  Google Scholar 

  9. A.O.F. Hayama and H.R.Z. Sandim: Mater. Sci. Eng. A., 2006, vol. 418, pp. 182–92.

    Article  Google Scholar 

  10. S.-W. Choi, C.-L. Li, J.W. Won, J.-T. Yeom, Y.S. Choi, and J.-K. Hong: Mater. Sci. Eng. A., 2019, vol. 764, p. 138211.

    Article  CAS  Google Scholar 

  11. A. Ghosh, A. Singh, and N.P. Gurao: Mater. Charact., 2017, vol. 125, pp. 83–93.

    Article  CAS  Google Scholar 

  12. S.K. Sahoo, S. Panda, R.K. Sabat, G. Kumar, S.C. Mishra, U.K. Mohanty, and S. Suwas: Philos. Mag., 2015, vol. 95, pp. 1105–24.

    Article  CAS  Google Scholar 

  13. C.K. Yan, A.H. Feng, S.J. Qu, G.J. Cao, J.L. Sun, J. Shen, and D.L. Chen: Acta Mater., 2018, vol. 154, pp. 311–24.

    Article  CAS  Google Scholar 

  14. M.L. Wasz, F.R. Brotzen, R.B. McLellan, and A.J. Griffin: Int. Mater. Rev., 2013, vol. 41, pp. 1–12.

    Article  Google Scholar 

  15. Q. Yu, L. Qi, T. Tsuru, R. Traylor, D. Rugg, J.W. Morris Jr., M. Asta, D.C. Chrzan, and A.M. Minor: Science., 2015, vol. 347, pp. 635–39.

    Article  CAS  Google Scholar 

  16. H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.

    Article  CAS  Google Scholar 

  17. C. Ouchi, H. Iizumi, and S. Mitao: Mater. Sci. Eng. A., 1998, vol. 243, pp. 186–95.

    Article  Google Scholar 

  18. A. Issariyapat, P. Visuttipitukul, J. Umeda, and K. Kondoh: Addit. Manuf., 2020, vol. 36, p. 101537.

    CAS  Google Scholar 

  19. N. Liu, Y. Wang, W.-J. He, J. Li, A. Chapuis, B.-F. Luan, and Q. Liu: T. Nonferr. Met. Soc. China., 2018, vol. 28, pp. 1123–31.

    Article  CAS  Google Scholar 

  20. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54.

    Article  CAS  Google Scholar 

  21. N. Bozzolo, L. Chan, and A.D. Rollett: J. Appl. Crystallogr., 2010, vol. 43, pp. 596–602.

    Article  CAS  Google Scholar 

  22. S. Xu, M. Gong, Y. Jiang, C. Schuman, J.-S. Lecomte, and J. Wang: Acta Mater., 2018, vol. 152, pp. 58–76.

    Article  CAS  Google Scholar 

  23. N. Bozzolo, N. Dewobroto, T. Grosdidier, and F. Wagner: Mater. Sci. Eng. A., 2005, vol. 397, pp. 346–55.

    Article  Google Scholar 

  24. J.W. Won, T. Lee, S.-G. Hong, Y. Lee, J.H. Lee, and C.S. Lee: Met. Mater. Int., 2016, vol. 22, pp. 1041–48.

    Article  CAS  Google Scholar 

  25. S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29.

    Article  CAS  Google Scholar 

  26. F. Wagner, N. Bozzolo, O. Van Landuyt, and T. Grosdidier: Acta Mater., 2002, vol. 50, pp. 1245–59.

    Article  CAS  Google Scholar 

  27. H.-T. Jiang, J.-X. Liu, Z.-L. Mi, A.-M. Zhao, and Y.-J. Bi: Int. J. Min. Met. Mater., 2012, vol. 19, pp. 530–35.

    Article  CAS  Google Scholar 

  28. G.S. Dyakonov, S. Mironov, S.V. Zherebtsov, S.P. Malysheva, G.A. Salishchev, A.A. Salem, and S.L. Semiatin: Mater. Sci. Eng. A., 2014, vol. 607, pp. 145–54.

    Article  CAS  Google Scholar 

  29. G. Salishchev, S. Mironov, S. Zherebtsov, and A. Belyakov: Mater. Charact., 2010, vol. 61, pp. 732–39.

    Article  CAS  Google Scholar 

  30. Y.B. Chun, S.L. Semiatin, and S.K. Hwang: Acta Mater., 2006, vol. 54, pp. 3673–89.

    Article  CAS  Google Scholar 

  31. N. Bozzolo, N. Dewobroto, H.R. Wenk, and F. Wagner: J. Mater. Sci., 2007, vol. 42, pp. 2405–16.

    Article  CAS  Google Scholar 

  32. N. Hansen: Scripta Mater., 2004, vol. 51, pp. 801–06.

    Article  CAS  Google Scholar 

  33. L. Chai, B. Luan, D. Xiao, M. Zhang, K.L. Murty, and Q. Liu: Mater. Des., 2015, vol. 85, pp. 296–308.

    Article  CAS  Google Scholar 

  34. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  CAS  Google Scholar 

  35. P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia: Scripta Mater., 2012, vol. 66, pp. 785–88.

    Article  CAS  Google Scholar 

  36. X. Zhang, N. Hansen, Y. Gao, and X. Huang: Acta Mater., 2012, vol. 60, pp. 5933–43.

    Article  CAS  Google Scholar 

  37. A. Ghaderi and M.R. Barnett: Acta Mater., 2011, vol. 59, pp. 7824–39.

    Article  CAS  Google Scholar 

  38. Y. Xu, S. Joseph, P. Karamched, K. Fox, D. Rugg, F.P.E. Dunne, and D. Dye: Nat. Commun., 2020, vol. 11, p. 5868.

    Article  CAS  Google Scholar 

  39. A. Fitzner, J. Palmer, B. Gardner, M. Thomas, M. Preuss, and J.Q. da Fonseca: J. Mater. Sci., 2019, vol. 54, pp. 7961–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Postdoctoral Science Foundation of China (2021M690174), the Graduate Student Innovation Program of Chongqing University of Technology (CLGYCX20202003), the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials at Guangxi University (2021GXYSOF06), the National Natural Science Foundation of China (52171052 and 51901193), and the Sichuan Science and Technology Program (2020ZDZX0017-3).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linjiang Chai, Jinru Luo or Lei Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Chai, L., Shen, J. et al. Microstructure, Texture, and Hardness Evolution of Cold-Rolled High-Purity Ti Sheet During Annealing at 350 °C to 550 °C. Metall Mater Trans A 53, 2086–2098 (2022). https://doi.org/10.1007/s11661-022-06651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06651-z

Navigation