Skip to main content
Log in

3-D Mathematical Modeling of the Effect of Shunt Plate Hole Distribution and Magnetic Field on Transport Phenomena Within DC Casting of Magnesium Alloy Slab

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Due to the nonaxisymmetric feature of slabs, the macrotransport phenomena during direct chill (DC) casting are more complex than the macrotransport phenomena of round billets and are tightly associated with their dimensions, width-thickness ratio and even the structure of the shunt plate used to feed the melt to the slab edge. In the present research, aiming to find the desirable structure of the shunt plate and clarify how the form of the magnetic field (MF) affects the transport phenomena, a 3-D coupled mathematical model was set up and used to study the fluid flow, heat transfer and solidification characteristics during electromagnetic DC casting of a magnesium alloy slab with dimensions of 1200 mm (width) × 400 mm (thickness). The effects of the hole distribution of the shunt plate under MF or no MF and different forms of MF on the corresponding physical fields were studied systematically. The predicted results, including the Lorentz force distribution, macro-flow and temperature fields, cooling curve and sump depth, were presented and compared. The results indicated that reducing the holes facing the wide surface was helpful for obtaining desirable variations, such as more homogeneous melt flow and temperature fields, shallower sump depth and faster cooling rate. Using a specific out-of-phase pulsed magnetic field also promoted the above variations more than other forms of magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. M. Duan, L. Luo, and Y. Liu: J. Alloys Compd., 2020, vol. 823, p. 153691.

    Article  CAS  Google Scholar 

  2. D.G. Eskin, J. Zuidema, V.I. Savran, and L. Katgerman: Mater. Sci. Eng. A., 2004, vol. 384, pp. 232–44.

    Article  CAS  Google Scholar 

  3. C. Zhu, Z.H. Zhao, Q.F. Zhu, G.S. Wang, X.D. Liu, Y. Bo Zuo, H.C. Dong, and G.W. Qin: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2021, vol. 52, pp. 3342–52.

    Article  CAS  Google Scholar 

  4. V. Hatić, B. Mavrič, N. Košnik, and B. Šarler: Appl. Math. Model., 2018, vol. 54, pp. 170–88.

    Article  Google Scholar 

  5. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang: J. Mater. Sci. Technol., 2018, vol. 34, pp. 245–47.

    Article  Google Scholar 

  6. X.D. Liu, Q.F. Zhu, Y.B. Zuo, C. Zhu, Z.H. Zhao, and J.Z. Cui: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, vol. 50, pp. 5727–33.

    Article  CAS  Google Scholar 

  7. Y.B. Zuo, M.X. Xia, S.M. Liang, Y. Wang, G.M. Scamans, and Z.Y. Fan: Mater. Sci. Technol., 2011, vol. 27, pp. 101–07.

    Article  CAS  Google Scholar 

  8. Y. Tian, Z.L. Liu, X.Q. Li, L.H. Zhang, R.Q. Li, R.P. Jiang, and F. Dong: Ultrason. Sonochem., 2018, vol. 43, pp. 29–37.

    Article  CAS  Google Scholar 

  9. X.R. Chen, Q.C. Le, X.B. Wang, Q.Y. Liao, and C.Y. Chu: Metals (Basel)., 2017, vol. 7, p. 173.

    Article  CAS  Google Scholar 

  10. S.J. Guo, Q.C. Le, Z.H. Zhao, Z.J. Wang, and J.Z. Cui: Mater. Sci. Eng. A., 2005, vol. 404, pp. 323–29.

    Article  CAS  Google Scholar 

  11. J.P. Park, M.G. Kim, U.S. Yoon, and W.J. Kim: J. Mater. Sci., 2009, vol. 44, pp. 47–54.

    Article  CAS  Google Scholar 

  12. Z.W. Shao, Q.C. Le, Z.Q. Zhang, and J.Z. Cui: Mater. Des., 2011, vol. 32, pp. 4216–24.

    Article  CAS  Google Scholar 

  13. X.R. Chen, Y.H. Jia, Q.Y. Liao, W.T. Jia, Q.C. Le, S.C. Ning, and F.X. Yu: J. Alloys Compd., 2019, vol. 774, pp. 710–20.

    Article  CAS  Google Scholar 

  14. W.C. Duan, S.Q. Yin, W.H. Liu, J. Yang, Q.F. Zhu, L. Bao, P. Wang, J.Z. Cui, and Z.Q. Zhang: Int. J. Numer. Methods Heat Fluid Flow., 2021, vol. 31, pp. 829–57.

    Article  Google Scholar 

  15. Y.H. Jia, J. Hou, H. Wang, Q.C. Le, Q. Lan, X.R. Chen, and L. Bao: J. Mater. Process. Technol., 2020, vol. 278, p. 116542.

    Article  CAS  Google Scholar 

  16. H.M. Ji, T.J. Luo, C. Wang, J. Cui, and Y.S. Yang: Mater. Sci. Technol. (United Kingdom)., 2017, vol. 33, pp. 33–39.

    Article  CAS  Google Scholar 

  17. W.C. Duan, J.X. Bao, W.H. Liu, Z.Q. Zhang, and J.Z. Cui: Int. J. Heat Mass Transf., 2020, vol. 162, p. 120353.

    Article  CAS  Google Scholar 

  18. P. Jarry and M. Rappaz: Comptes Rendus Phys., 2018, vol. 19, pp. 672–87.

    Article  CAS  Google Scholar 

  19. P. Barral, A. Bermúdez, M.C. Muñiz, M.V. Otero, P. Quintela, and P. Salgado: J. Mater. Process. Technol., 2003, vol. 142, pp. 383–99.

    Article  CAS  Google Scholar 

  20. J.C. Álvarez-Hostos, A.D. Bencomo, E.S. Puchi-Cabrera, V.D. Fachinotti, B. Tourn, and J.C. Salazar-Bove: Eng. Anal. Bound. Elem., 2019, vol. 106, pp. 170–81.

    Article  Google Scholar 

  21. J.M. Drezet and T. Pirling: J. Mater. Process. Technol., 2014, vol. 214, pp. 1372–78.

    Article  CAS  Google Scholar 

  22. M. Hasan and L. Begum: Heat Mass Transf. Stoffuebertrag., 2016, vol. 52, pp. 789–803.

    Article  CAS  Google Scholar 

  23. M. Hasan and L. Begum: J. Therm. Sci. Eng. Appl., 2015, vol. 7, p. 21008.

    Article  Google Scholar 

  24. L. Begum and M. Hasan: Int. J. Heat Mass Transf., 2014, vol. 73, pp. 42–58.

    Article  CAS  Google Scholar 

  25. L. Begum and M. Hasan: Appl. Math. Model., 2016, vol. 40, pp. 9029–51.

    Article  Google Scholar 

  26. L. Begum and M. Hasan: Int. J. Therm. Sci., 2014, vol. 86, pp. 68–87.

    Article  Google Scholar 

  27. L. Begum and M. Hasan: Numer. Heat Transf. Part A Appl., 2015, vol. 67, pp. 746–70.

    Article  CAS  Google Scholar 

  28. S.Y. Shi, H. Hao, X.G. Zhang, C.F. Fang, S. Yao, and J.Z. Jin: Rare Met. Mater. Eng., 2009, vol. 38, pp. 203–08.

    Article  Google Scholar 

  29. W.Y. Hu, Q.C. Le, Z.Q. Zhang, L. Bao, and J.Z. Cui: J. Magnes. Alloy., 2013, vol. 1, pp. 88–93.

    Article  CAS  Google Scholar 

  30. M. Hasan and L. Begum: J. Magnes. Alloy., 2014, vol. 2, pp. 275–86.

    Article  CAS  Google Scholar 

  31. M. Hasan and L. Begum: J. Magnes. Alloy., 2015, vol. 3, pp. 283–301.

    Article  CAS  Google Scholar 

  32. O. Ben-David, A. Levy, B. Mikhailovich, and A. Azulay: Phys. Fluids., 2014, vol. 26, p. 097104.

    Article  CAS  Google Scholar 

  33. B.E. Launder and B.I. Sharma: Lett. Heat Mass Transf., 1974, vol. 1, pp. 131–37.

    Article  Google Scholar 

  34. M. Paliwal and I.H. Jung: Acta Mater., 2013, vol. 61, pp. 4848–60.

    Article  CAS  Google Scholar 

  35. G.C. Nzebuka, M.A. Waheed, S.I. Kuye, and B.I. Olajuwon: Metall. Mater. Trans. B., 2019, vol. 50, pp. 866–80.

    Article  CAS  Google Scholar 

  36. V.R. Voller and C. Prakash: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 1709–19.

    Article  CAS  Google Scholar 

  37. ANSYS Fluent User’s Guide, Release 18.0, 2017. Available online: http://www.ansys.com/products/fluids/

  38. D.C. Weckman and P. Niessen: Metall. Trans. B., 1982, vol. 13B, pp. 593–602.

    Article  CAS  Google Scholar 

  39. E.D. Tarapore: in Light Metals, P. G. Campbell, ed., TMS, Warrendale, PA, 1989, pp. 875–80.

  40. C.J. Vreeman and F.P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 687–704.

    Article  CAS  Google Scholar 

  41. W.Y. Hu, Q.C. Le, Z.Q. Zhang, L. Bao, X. Liu, Z.W. Shao, and J.Z. Cui: Int. J. Cast Met. Res., 2016, vol. 29, pp. 228–35.

    Article  CAS  Google Scholar 

  42. M.Y. Ha, H.G. Lee, and S.H. Seong: J. Mater. Process. Technol., 2003, vol. 133, pp. 322–39.

    Article  CAS  Google Scholar 

  43. A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 3795–3801.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Key Research and Development Program of China (Grant No. 2021YFB3701004), the National Natural Science Foundation of China (Grant No. 51971054, 52171055) and the Fundamental Research Funds for the Central Universities (N2009006, N2107007).

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Nomenclature

 

Latin symbols

 

A

mushy zone constant (kg/(m3 s))

X, Y, Z

wide direction, thickness direction, vertical direction

\(\vec{B}\)

magnetic flux density vector (T)

C

specific heat (J/(g K))

x, y, z

coordinate value at wide direction, thickness direction, vertical direction

C eff

equivalent specified heat (J/(g K))

D

extra dissipation term in k-equation

  

d

secondary dendrite arm spacing (m)

  

\(\vec{E}\)

electric field intensity vector (V/m)

Greek symbols

E

extra generation term in ε-equation

μ 0

magnetic permeability

\(\vec{f}\)

electromagnetic force (N/m3)

ε 0

dielectric constant

fl, fs

liquid fraction, solid fraction

ρ e

electric charge density (C/m2)

f1, f1, fμ

constants used in low Reynolds k-ε

σ

electrical conductivity (S/m)

fk, fcr

constants related to mushy zone

μ

laminar viscosity (Pa s)

\(\vec{F}\)

mean electromagnetic force (N/m3)

μ T

turbulent viscosity (Pa s)

FX, FY, FZ

Time-averaged electromagnetic force components in three directions (N/m3)

ρ

density (kg/m3)

β

volume expansion coefficient (1/K)

\(\vec{g}\)

acceleration of gravity (m/s2)

λ

thermal conductivity (W/(m K))

h

heat transfer coefficient (W/(m2 K))

ε

turbulent kinetic energy dissipation rate (m2/s3)

\(\vec{J}\)

induced current density vector (A/m2)

Φ

generalized dependent variable

k

turbulent kinetic energy (m2/s2)

ΓΦ

diffusion coefficient associated with Φ

L

latent heat (kJ/kg)

S Φ

Source term associated with Φ

P

pressure (Pa)

  

P K

production term in turbulent kinetic energy equation

  

Subscripts

Q

joule heat (W/m3)

air

Air

Q ave

mean joule heat (W/m3)

cast

Cast

Re

Reynolds number

con

contact

r e

hydraulic radius of the nozzle (m)

en

environment

R T

turbulent Reynolds number based on the turbulent quantities

film

Film

i, j, k

coordinate direction

S T

turbulence intensity

inlet

inlet

T

temperature (K)

l

liquid

T P

period of the varying current (s)

oulet

oulet

t

time (s)

pour

pouring

U

velocity at wide direction (m/s)

ref

reference

V

velocity at thickness direction (m/s)

s

solid

W

velocity at vertical direction (m/s)

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, W., Bao, J., Liu, W. et al. 3-D Mathematical Modeling of the Effect of Shunt Plate Hole Distribution and Magnetic Field on Transport Phenomena Within DC Casting of Magnesium Alloy Slab. Metall Mater Trans A 53, 2018–2039 (2022). https://doi.org/10.1007/s11661-022-06645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06645-x

Navigation