Skip to main content
Log in

Role of Ti on the Growth of Coarse Columnar Austenite Grain During Nb-Bearing Peritectic Steel Solidification

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The role of Ti on the growth behavior of the as-cast austenite grains of the Nb-bearing peritectic steel with different Nb contents during solidification was investigated by fast-directional solidification experiments. The results show that the austenite grains of the Nb-bearing peritectic steel were almost of coarse columnar austenite grains (CCGs) with different Nb contents. As the content of Nb increased from 0.02 to 0.08 wt pct, the number of Nb(C, N) particles increased from 876 to 3140/mm2 at a distance of 10 mm from the surface. Accordingly, the short-axis diameters of the CCGs decreased from 1.71 to 1.14 mm as the pinning pressure provided by carbonitride increased from 0.36 to 0.62 kJ·m−3. The addition of Ti to the Nb-bearing peritectic steel greatly promoted the precipitation of carbonitride in the form of (Nb, Ti)(C, N) composite particles during solidification. As a result, the number of (Ti, Nb)(C, N) particles at a 10 mm distance from the surface increased significantly from 12,210 to 14,324/mm2 as the content of Nb increased from 0.02 to 0.08 wt pct with 0.02 wt pct Ti addition compared to that without Ti addition. The substantial increase in the pinning pressure provided by the (Nb, Ti)(C, N) composite particles from 5.1 to 8.4 kJ·m−3 reduced the short-axis diameters of the γ grains from 1.32 mm to less than 0.2 mm. Meanwhile, the growth of CCGs was gradually inhibited. When the Nb content reached 0.08 with 0.02 wt pct Ti addition, the growth of CCGs was completely inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Reiter, C. Bernhard, and H. Presslinger: Mater. Charact., 2008, vol. 59, pp. 737–46.

    Article  CAS  Google Scholar 

  2. Y.D. Wang, Q. Ren, L.F. Zhang, X.G. Yang, W. Yang, Y. Ren, and H.J. Zhang: Steel Res. Int., 2021, vol. 92, p. 2000649.

    Article  CAS  Google Scholar 

  3. R. Dippenaar, S.C. Moon, and E. Szekeres: AISE Steel Technol., 2007, vol. 4, pp. 105–15.

    CAS  Google Scholar 

  4. M. Ohno, S. Tsuchiya, and K. Matsuura: ISIJ Int., 2015, vol. 55, pp. 2374–82.

    Article  CAS  Google Scholar 

  5. Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi, and Y. Ohmori: Mater. Sci. Technol., 1990, vol. 6, pp. 793–806.

    Article  CAS  Google Scholar 

  6. H. Yin, M. Lowry, S. Morales, and H.T. Tsai: AISE Steel Technol., 2006, vol. 3, pp. 23–31.

    Google Scholar 

  7. B. Mintz and J.M. Arrowsmith: Met. Technol., 1979, vol. 6, pp. 24–32.

    Article  CAS  Google Scholar 

  8. N.S. Pottore, C.I. Garcia, and A.J. DeArdo: Metall. Trans. A., 1991, vol. 22, pp. 1871–80.

    Article  Google Scholar 

  9. T. Maruyama, K. Matsuura, M. Kudoh, and Y. Itoh: Tetsu-to-Hagané., 1999, vol. 85, pp. 585–91.

    Article  CAS  Google Scholar 

  10. N. Yoshida, O. Umezawa, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 547–55.

    Article  CAS  Google Scholar 

  11. S. Tsuchiya, M. Ohno, K. Matsuura, and K. Isobe: Acta Mater., 2011, vol. 59, pp. 3334–42.

    Article  CAS  Google Scholar 

  12. M. Ohno, S. Tsuchiya, and K. Matsuura: Acta Mater., 2011, vol. 59, pp. 5700–09.

    Article  CAS  Google Scholar 

  13. M. Ohno, S. Tsuchiya, and K. Matsuura: Metall. Mater. Trans. A., 2012, vol. 43A, pp. 2031–42.

    Article  Google Scholar 

  14. S. Kencana, M. Ohno, K. Matsuura, and K. Isobe: ISIJ Int., 2010, vol. 50, pp. 1965–71.

    Article  CAS  Google Scholar 

  15. S. Tsuchiya, M. Ohno, and K. Matsuura: ISIJ Int., 2010, vol. 50, pp. 1959–64.

    Article  CAS  Google Scholar 

  16. H.L. Yang, G. Xu, L. Wang, Q. Yuan, and B.A. He: Met. Sci. Heat. Treat., 2017, vol. 59, pp. 8–13.

    Article  CAS  Google Scholar 

  17. K. Banerjee, M. Militzer, M. Perez, and X. Wang: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 3161–72.

    Article  Google Scholar 

  18. G. Azevedo, R. Barbosa, E.V. Pereloma, and D.B. Santos: Mater. Sci. Eng. A., 2005, vol. 402, pp. 98–108.

    Article  Google Scholar 

  19. A. Karmakar, S. Kundu, S. Roy, S. Neogy, D. Srivastava, and D. Chakrabarti: Mater. Sci. Technol., 2014, vol. 30, pp. 653–64.

    Article  CAS  Google Scholar 

  20. M. Bhattacharyya, Z. Brian, and S. Hatem: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 3674–82.

    Article  Google Scholar 

  21. P.R. Schieller, S. Lachmann, and C. Klinkenberg: ISIJ Int., 2007, vol. 46, pp. 1865–70.

    Article  Google Scholar 

  22. Y.Y. Hou and G.G. Cheng: ISIJ Int., 2018, vol. 58, pp. 2298–2307.

    Article  CAS  Google Scholar 

  23. M. Ohno, T. Yamaguchi, K. Matsuura, and K. Isobe: ISIJ Int., 2011, vol. 5, pp. 1831–37.

    Article  Google Scholar 

  24. X.X. Wang, B. Chang, J.J. Li, L. Zhang, and J.W. Ye: Acta Metall. Sin., 1997, vol. 5, pp. 485–91.

    Google Scholar 

  25. X.X. Wang, X.Y. Liu, W.J. Lv, D.M. Wu, L. Zhang, and J.W. Ye: J. Iron Steel Res. Int., 1998, vol. 6, pp. 36–40.

    Google Scholar 

  26. G.K. Tirumalasetty, M. Huis, C.M. Fang, Q. Xu, and H.W. Zandbergen: Acta Mater., 2011, vol. 59, pp. 7406–15.

    Article  CAS  Google Scholar 

  27. F. Ma, G. Wen, P. Tang, M. Feng, and W. Wang: Metall. Mater. Trans. B., 2011, vol. 42B, pp. 81–86.

    Article  Google Scholar 

  28. J.Z. An, Z.Z. Cai, and M.Y. Zhu: Int. J. Miner. Metall. Mater., 2021, https://doi.org/10.1007/s12613-021-2375-2.

    Article  Google Scholar 

  29. W.H. Du, C.R. Li, and C.L. Zhuang: High Temp. Mater. Process., 2020, vol. 39, pp. 599–607.

    Article  CAS  Google Scholar 

  30. K.M. Hyeok, K. Jin-Kyung, B. Jian, M. Hardy, S. Taejin, K.S. Kyu, and D.C. Bruno: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 5509–23.

    Google Scholar 

  31. G.E. Pellisser and S.M. Purdy: Stereology and Quantitative Metallography, 2nd ed. ASTM, Atlantic City, 1972, pp. 128–29.

    Book  Google Scholar 

  32. I. Andersen and O. Grong: Acta Metall. Mater., 1995, vol. 43, pp. 2673–88.

    Article  CAS  Google Scholar 

  33. E.D. Hondros: Proc. R. Soc. A., 1965, vol. 286, pp. 479–98.

    CAS  Google Scholar 

Download references

Acknowledgments

The present work is financially supported by the National Natural Science Foundation of China (51774075, 52174307) and the Liao Ning Revitalization Talents Program (XLYC1802032). The authors greatly appreciate their support.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaozhen Cai or Miaoyong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Cai, Z. & Zhu, M. Role of Ti on the Growth of Coarse Columnar Austenite Grain During Nb-Bearing Peritectic Steel Solidification. Metall Mater Trans A 53, 1540–1551 (2022). https://doi.org/10.1007/s11661-022-06619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06619-z

Navigation