Skip to main content
Log in

Microstructure Evolution in Heat-Affected Zone of Shipbuilding Steel Plates with Mg Deoxidation Containing Different Nb Contents

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study is to comprehensively clarify the effect of Nb addition on the particles, austenite grain growth, microstructure evolution, and toughness in the heat-affected zone after high heat input welding at 400 kJ cm−1 for shipbuilding steel plates with Mg deoxidation containing 0.002 and 0.016 wt pct Nb. The Nb addition enhances the dissolution of small particles (< 20 nm) and the coarsening of large particles (> 20 nm) during welding period of T > 1300 °C, because the stability of (Ti, Nb)(C, N) particles is reduced caused by the weaker bonding of Ti–C, Nb–N, and Nb–C. With the temperature above 1300 °C during welding, the austenite grain growth rate increases with Nb addition because the particle pinning force reduces by the small-sized particle dissolution and large-size particle coarsening. Nb addition hinders the ferrite transformation with the transformation temperature decreasing from 700–535 °C to 670–520 °C, due to the increased PAG size. Thus, with Nb addition, the microstructures change from high-temperature fine polygonal ferrite in small prior austenite grains (PAGs) to low-temperature coarse intragranular bainite ferrite in large PAGs, reducing the high-angled grain boundary density from 1.3 to 0.5 μm−1 and increasing the effective grain size from 10.4 to 17.6 μm. Thus, the toughness at − 40 °C decreases from 127 to 58 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. Yang, L.Y. Xu, K. Zhu, R.Z. Wang, L.J. Zhou, and W.L. Wang: Steel Res. Int., 2015, vol. 86, pp. 619–25.

    Article  CAS  Google Scholar 

  2. X.Q. Pan, J. Yang, Q.D. Zhong, Y.L. Qiu, G.G. Cheng, M.Y. Yao, and J.X. Dong: Ironmak. Steelmak., 2020, https://doi.org/10.1080/03019233.2020.1848304.

    Article  Google Scholar 

  3. Y.H. Zhang, J. Yang, D.K. Liu, X.Q. Pan, and L.Y. Xu: Metall. Mater. Trans. A., 2021, vol. 52, pp. 668–79.

    Article  CAS  Google Scholar 

  4. X.Q. Pan, J. Yang, and Y.H. Zhang: Steel Res. Int., 2021, https://doi.org/10.1002/srin.202100376.

    Article  Google Scholar 

  5. J. Yang, K. Zhu, R.Z. Wang, and J.G. Shen: Steel Res. Int., 2011, vol. 82, pp. 552–56.

    Article  CAS  Google Scholar 

  6. L.Y. Xu, J. Yang, R.Z. Wang, Y.N. Wang, and W.L. Wang: Metall. Mater. Trans. A., 2016, vol. 47, pp. 3354–64.

    Article  CAS  Google Scholar 

  7. L.Y. Xu, J. Yang, R.Z. Wang, W.L. Wang, and Y.N. Wang: J. Iron Steel Res. Int., 2018, vol. 25, pp. 433–41.

    Article  Google Scholar 

  8. X.Q. Pan, J.J. Zhi, Z.J. Fan, Y.H. Zhang, and J. Yang: Steel Res. Int., 2021, https://doi.org/10.1002/srin.202100099.

    Article  Google Scholar 

  9. X.Q. Pan, J. Yang, Y.H. Zhang, J. Park, and H. Ono: Mater. Sci. Tech., 2021, vol. 118, p. 409.

    CAS  Google Scholar 

  10. L.Y. Xu and J. Yang: Metall. Mater. Trans. A., 2020, vol. 51, pp. 4540–48.

    Article  CAS  Google Scholar 

  11. A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida, and H. Yasui: Nippon Steel Tech. Rep., 2004, vol. 90, pp. 292–413.

    Google Scholar 

  12. G.K. Bansal, V.C. Srivastava, and S.G. Chowdhury: Mater. Sci. Eng. A., 2019, vol. 767, p. 138416.

    Article  CAS  Google Scholar 

  13. R.M. Poths, R.L. Higginson, and E.J. Palmiere: Scripta Mater., 2001, vol. 44, pp. 147–51.

    Article  CAS  Google Scholar 

  14. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997.

    Google Scholar 

  15. L.M. Fu, H.R. Wang, W. Wang, and A.D. Shan: Mater. Sci. Tech., 2013, vol. 27, pp. 996–1001.

    Article  Google Scholar 

  16. A. Karmakar, S. Kundu, S. Roy, S. Neogy, D. Srivastava, and D. Chakrabarti: Mater. Sci. Tech., 2014, vol. 30, pp. 653–64.

    Article  CAS  Google Scholar 

  17. M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W. Poole: Acta Mater., 2012, vol. 60, pp. 1015–26.

    Article  CAS  Google Scholar 

  18. X.Q. Pan, J. Yang, Y.H. Zhang, L.Y. Xu, and R.B. Li: Ironmak. Steelmak., 2021, vol. 48, pp. 417–27.

    Article  CAS  Google Scholar 

  19. H. Kejian and T.N. Baker: Mater. Sci. Eng. A., 1993, vol. 169, pp. 53–65.

    Article  Google Scholar 

  20. J. Moon, S. Kim, H. Jeong, J. Lee, and C. Lee: Mater. Sci. Eng. A., 2007, vol. 454–455, pp. 648–53.

    Article  Google Scholar 

  21. Y. Chen, D.T. Zhang, Y.C. Liu, H.J. Li, and D.K. Xu: Mater. Charact., 2013, vol. 84, pp. 232–39.

    Article  CAS  Google Scholar 

  22. X.Q. Yuan, Z.Y. Liu, S.H. Jiao, L.Q. Ma, and G.D. Wang: ISIJ Int., 2006, vol. 46, pp. 579–85.

    Article  CAS  Google Scholar 

  23. G.I. Rees, J. Perdrix, T. Maurickx, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1995, vol. 194, pp. 179–86.

    Article  Google Scholar 

  24. T. Jia and M. Militzer: Metall. Mater. Trans. A., 2015, vol. 46, pp. 614–21.

    Article  CAS  Google Scholar 

  25. X.P. Ma, L.J. Wang, C.M. Liu, and S.V. Subramanian: Mater. Sci. Eng. A., 2011, vol. 528, pp. 6812–18.

    Article  CAS  Google Scholar 

  26. K. Hausmann, D. Krizan, K. Spiradek-Hahn, A. Pichler, and E. Werner: Mater. Sci. Eng. A., 2013, vol. 588, pp. 142–50.

    Article  CAS  Google Scholar 

  27. X.W. Chen, G.Y. Qiao, X.L. Han, X. Wang, F.R. Xiao, and B. Liao: Mater. Des., 2014, vol. 53, pp. 888–901.

    Article  CAS  Google Scholar 

  28. X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, and S.V. Subramanian: Mater. Sci. Eng. A., 2017, vol. 704, pp. 448–58.

    Article  CAS  Google Scholar 

  29. A.J. Craven, K. He, L.A.J. Garvie, and T.N. Baker: Acta Mater., 2000, vol. 48, pp. 3857–68.

    Article  CAS  Google Scholar 

  30. A.J. Craven, K. He, L.A.J. Garvie, and T.N. Baker: Acta Mater., 2000, vol. 48, pp. 3869–78.

    Article  CAS  Google Scholar 

  31. Y. Li and T.N. Baker: Mater. Sci. Tech., 2010, vol. 26, pp. 1029–40.

    Article  CAS  Google Scholar 

  32. C.L. Davis and J.E. King: Metall. Mater. Trans. A., 1994, vol. 25, pp. 563–73.

    Article  Google Scholar 

  33. R.A. Farrar, Z. Zhang, S.R. Bannister, and G.S. Barritte: J. Mater. Sci., 1993, vol. 28, pp. 1385–90.

    Article  CAS  Google Scholar 

  34. R.C. Sharma, V.K. Lakshmanan, and J.S. Kirkaldy: Metall. Trans. A., 1984, vol. 15, pp. 545–53.

    Article  Google Scholar 

  35. K. Balasubramanian and J.S. Kirkaldy: Calphad., 1986, vol. 10, pp. 187–202.

    Article  CAS  Google Scholar 

  36. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Chapman and Hall, London, 1992.

    Book  Google Scholar 

  37. J. Moon, C. Lee, S. Uhm, and J. Lee: Acta Mater., 2006, vol. 54, pp. 1053–61.

    Article  CAS  Google Scholar 

  38. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids., 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  39. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book, 8th ed., Elsevier Butterworth-Heinemann, Amsterdam, 2004, pp. 6–23, 24.

  40. G. Mao, R. Cao, J. Chen, X. Guo, and Y. Jiang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 1206–14.

    Article  Google Scholar 

  41. H. Zhao, B.P. Wynne, and E.J. Palmiere: J. Mater. Sci., 2018, vol. 53, pp. 3785–3804.

    Article  CAS  Google Scholar 

  42. Y. Shen, B. Chen, and C. Wang: Metall. Mater. Trans. A., 2021, vol. 52, pp. 14–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the National Natural Science Foundation of China (Grant No. U1960202).

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Yang, J. & Zhang, Y. Microstructure Evolution in Heat-Affected Zone of Shipbuilding Steel Plates with Mg Deoxidation Containing Different Nb Contents. Metall Mater Trans A 53, 1512–1528 (2022). https://doi.org/10.1007/s11661-022-06617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06617-1

Navigation