Skip to main content
Log in

Evolution of Texture, Grain Boundary Constitution, Strain, and Corrosion Behavior of Electrodeposited Ni–P Coatings as a Function of Deposition Current Density

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni–P coatings with low P content (P wt pct < 1.0) were fabricated at different applied current densities of electrodeposition ranging from 5 to 80 mA cm−2. Electrochemical analysis revealed that the Ni–P coating deposited at 60 mA cm−2 exhibited the highest corrosion resistance, while the coating deposited at 5 mA cm−2 exhibited the lowest corrosion resistance. The corrosion analysis results were correlated with the electron backscatter diffraction analysis. Low surface free energy (100) texture, low average grain size, and a high fraction of Σ3 low-energy grain boundaries contributed to the superior corrosion resistance of the 60 mA cm−2 coating. A higher corrosion rate in the case of 5 mA cm−2 coating was primarily due to higher energy surface texture and larger grain size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.H. Jeong, U. Erb, K.T. Aust, and G. Palumbo: Scr. Mater., 2003, vol. 48, pp. 1067–72.

    Article  CAS  Google Scholar 

  2. P. Peelers, G.V.D. Hoorn, T. Daenen, A. Kurowski, and G. Staikov: Electrochim. Acta., 2001, vol. 47, pp. 161–69.

    Article  Google Scholar 

  3. A.P. Ordine, S.L. Díaz, I.C.P. Margarit, O.E. Barcia, and O.R. Mattos: Electrochim. Acta., 2006, vol. 51, pp. 1480–86.

    Article  CAS  Google Scholar 

  4. J. Lin and C. Chou: Surf. Coat. Technol., 2019, vol. 368, pp. 126–37.

    Article  CAS  Google Scholar 

  5. M. Crobu, A. Scorciapino, B. Elsener, and A. Rossi: Electrochim. Acta., 2008, vol. 53, pp. 3364–70.

    Article  CAS  Google Scholar 

  6. A.A. Zuleta, E. Correa, J.G. Castaño, F. Echeverría, A. Baron-wieche, P. Skeldon, and G.E. Thompson: Surf. Coatings Technol., 2017, vol. 321, pp. 309–20.

    Article  CAS  Google Scholar 

  7. C.A. Vlaic, M. Kurniawan, R. Peipmann, C.C. Lalău, M. Stich, U. Schmidt, and A. Bund: Surf. Coatings Technol., 2020, vol. 386, p. 125470.

    Article  CAS  Google Scholar 

  8. A. Lelevic and F.C. Walsh: Surf. Coatings Technol., 2019, vol. 369, pp. 198–220.

    Article  CAS  Google Scholar 

  9. B.P. Daly and F.J. Barry: Int. Mater. Rev., 2003, vol. 48, pp. 326–38.

    Article  CAS  Google Scholar 

  10. A.M. Pillai, A. Rajendra, and A.K. Sharma: J. Coatings Technol. Res., 2012, vol. 9, pp. 785–97.

    Article  CAS  Google Scholar 

  11. E. Bredael, B. Blanpain, J.P. Celis, and J.R. Roos: J. Electrochem. Soc., 1994, vol. 141, pp. 294–99.

    Article  CAS  Google Scholar 

  12. B. Bahadormanesh and M. Ghorbani: Appl. Surf. Sci., 2018, vol. 442, pp. 275–87.

    Article  CAS  Google Scholar 

  13. H.T. Padmaganesan, S. Banthia, V. Dihari, S. Chhangani, and M.J.N.V. Prasad: Mater. Sci. Eng. A., 2021, vol. 804, p. 140735.

    Article  CAS  Google Scholar 

  14. M. Czagány, P. Baumli, and G. Kaptay: Appl. Surf. Sci., 2017, vol. 423, pp. 160–69.

    Article  Google Scholar 

  15. N.N.A. Azli, N.F.M. Amin, S.T. Oluhende, S.N.A. Mohamad, and N.A. Fadil: Mater. Today Proc., 2019, vol. 39, pp. 1071–76.

    Article  Google Scholar 

  16. C. Sun, J. Li, S. Shuang, H. Zeng, and J. Luo: Corros. Sci., 2018, vol. 134, pp. 23–37.

    Article  CAS  Google Scholar 

  17. J. Wang, W. Lei, Y. Deng, Z. Xue, H. Qian, W. Liu, and X. Li: Surf. Coatings Technol., 2019, vol. 358, pp. 765–74.

    Article  CAS  Google Scholar 

  18. Y. Li, K. Zhang, M. Zhang, Y. Zhang, T. Wu, and H. Zhao: Int. J. Electrochem. Sci., 2020, vol. 15, pp. 2752–65.

    Article  CAS  Google Scholar 

  19. D. Umapathi, A. Devaraju, C. Rathinasuriyan, and A. Raji: Mater. Today Proc., 2020, vol. 22, pp. 1038–42.

    Article  CAS  Google Scholar 

  20. Y.J. Zhou, Z.H. Huang, and T.T. Nguyen: Surf. Coat. Technol., 2017, vol. 320, pp. 23–27.

    Article  CAS  Google Scholar 

  21. Y. He, W.T. Sun, S.C. Wang, P.A.S. Reed, and F.C. Walsh: Electrochim. Acta., 2017, vol. 245, pp. 872–82.

    Article  CAS  Google Scholar 

  22. D.K. Mahalingam and P. Bera: Surf. Interfaces., 2021, vol. 22, p. 100769.

    Article  CAS  Google Scholar 

  23. Y. Deng, Y. Yang, L. Ge, W. Yang, and K. Xie: Appl. Surf. Sci., 2017, vol. 425, pp. 261–71.

    Article  CAS  Google Scholar 

  24. D. Gilberto, A. Diaz, A. Barba, J. Jairo, O. Florez, J. Rafael, G. Parra, J. Cervantes, I. Angarita, A. Covelo, M. Ángel, and H. Gallegos: Data Br., 2020, vol. 32, p. 106159.

    Article  Google Scholar 

  25. Z.H. Huang, Y.J. Zhou, and T.T. Nguyen: Surf. Coatings Technol., 2019, vol. 364, pp. 323–29.

    Article  CAS  Google Scholar 

  26. A. Bahramian, M. Eyraud, F. Vacandio, and P. Knauth: Surf. Coatings Technol., 2018, vol. 345, pp. 40–52.

    Article  CAS  Google Scholar 

  27. J. Naderi and A.A.D. Sarhan: Meas. J. Int. Meas. Confed., 2019, vol. 139, pp. 490–97.

    Article  Google Scholar 

  28. S.T. Chung, Y.C. Chuang, S.Y. Chiu, and W.T. Tsai: Electrochim. Acta., 2011, vol. 58, pp. 571–77.

    Article  CAS  Google Scholar 

  29. W.E.G. Hansal, G. Sandulache, R. Mann, and P. Leisner: Electrochim. Acta., 2013, vol. 114, pp. 851–58.

    Article  CAS  Google Scholar 

  30. J. Xian, Z. Shen, Z. Zhang, H. Wu, M. Jin, and M. Jiang: Coatings., 2021, vol. 11(5), p. 527.

    Article  CAS  Google Scholar 

  31. M.S. Safavi and A. Rasooli: Surf. Coatings Technol., 2019, vol. 372, pp. 252–59.

    Article  CAS  Google Scholar 

  32. T.R. Tamilarasan, U. Sanjith, M.S. Shankar, and G. Rajagopal: Wear., 2017, vol. 390–391, pp. 385–91.

    Article  Google Scholar 

  33. M.H. Sliem, K. Shahzad, V.N. Sivaprasad, and R.A. Shakoor: Surf. Coat. Technol., 2020, vol. 403, p. 126340.

    Article  CAS  Google Scholar 

  34. D. Gilberto, A. Diaz, A. Barba, J. Jairo, O. Florez, J. Rafael, G. Parra, J. Cervantes, I. Angarita, A. Covelo, M. Ángel, and H. Gallegos: Mater. Lett., 2020, vol. 275, p. 128159.

    Article  Google Scholar 

  35. X. Yang-tao, D. Yu-jie, Z. Wei, and X. Tian-dong: Surf. Coatings Technol., 2017, vol. 330, pp. 170–77.

    Article  Google Scholar 

  36. X. Fu, F. Wang, X. Chen, J. Lin, and H. Cao: RSC Adv., 2020, vol. 10, pp. 34167–76.

    Article  CAS  Google Scholar 

  37. C. Liu, Q. Bi, A. Leyland, and A. Matthews: Corros. Sci., 2003, vol. 45, pp. 1243–56.

    Article  CAS  Google Scholar 

  38. C. Liu, Q. Bi, A. Leyland, and A. Matthews: Corros. Sci., 2003, vol. 45, pp. 1257–73.

    Article  CAS  Google Scholar 

  39. Y.K. Wei, Y.J. Li, Y. Zhang, X.T. Luo, and C.J. Li: Corros. Sci., 2018, vol. 138, pp. 105–15.

    Article  CAS  Google Scholar 

  40. A.P. Meshram, A. Gupta, and C. Srivastava: Philos. Mag., 2021, vol. 101, pp. 2541–59.

    Article  CAS  Google Scholar 

  41. M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson: Acta Mater., 2011, vol. 59, pp. 283–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the research funding received from the SERB Government of India. Electron microscopy facilities in AFMM, IISc Bangalore India is also acknowledged.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2021; accepted January 11, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, A.P., Gupta, A. & Srivastava, C. Evolution of Texture, Grain Boundary Constitution, Strain, and Corrosion Behavior of Electrodeposited Ni–P Coatings as a Function of Deposition Current Density. Metall Mater Trans A 53, 1430–1439 (2022). https://doi.org/10.1007/s11661-022-06603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06603-7

Navigation