Skip to main content
Log in

Effect of Solidification Segregation on Microstructure and Mechanical Properties of a Ni-Cr-Mo-V Steel Weld Metal

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of solute elements segregation during solidification on microstructure evolution and mechanical properties of a Ni-Cr-Mo-V rotor weld metal were studied. The alloy elements, such as Mn and Ni, segregated at inter-dendritic (ID) region, resulting in microstructural inhomogeneity between ID and dendritic core (DC) region. The microstructure of ID and DC region was characterized in detail by transmission electron microscopy (TEM) and transmission electron backscatter diffraction (T-EBSD). The results showed that the microstructure of ID region was composed of untempered martensite and retained austenite, while the bainite and ferrite were found at DC region. Two morphologies of retained austenite, film-like and blocky, were formed at different nucleation sites within ID region. The film-like retained austenite distributed at low-angle martensite lath boundaries held a near Nishiyama–Wasserman (N–W) orientation relationship with its surrounding untempered martensite lath, while the blocky retained austenite distributed at high-angle boundaries held no special orientation relationship with surrounding matrix. The segregation behavior of alloy elements was analyzed by Scheil solidification simulation. The formation mechanism of untempered martensite and retained austenite was proposed and the effects of ID segregation on impact toughness and hardness were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Liu, F. Lu, X. Liu, H. Ji, and Y. Gao: J. Alloy Compd., 2014, vol. 584, pp. 430–37.

    Article  CAS  Google Scholar 

  2. R. Chen, J. Gu, L. Han, and J. Pan: Mater. Sci. Technol., 2012, vol. 28, pp. 773–77.

    Article  Google Scholar 

  3. Z. Wang, X. Wang, Y. Nan, C. Shang, X. Wang, K. Liu, and B. Chen: Mater. Charact., 2018, vol. 138, pp. 67–77.

    Article  CAS  Google Scholar 

  4. T. Zhang, Z. Li, F. Young, H.J. Kim, H. Li, H. Jing, and W. Tillmann: ISIJ Int., 2014, vol. 54, pp. 1472–84.

    Article  CAS  Google Scholar 

  5. X. Qi, H. Di, Q. Sun, X. Wang, X. Chen, Y. Gao, and Z. Liu: J. Mater. Eng. Perform., 2019, vol. 28, pp. 7006–15.

    Article  CAS  Google Scholar 

  6. P. Zhou, B. Wang, L. Wang, Y. Hu, and L. Zhou: Mater. Sci. Eng. A, 2018, vol. 722, pp. 112–21.

    Article  CAS  Google Scholar 

  7. Y. Li, Z. Cai, K. Li, J. Pan, X. Liu, L. Sun, and P. Wang: J. Mater. Res., 2018, vol. 33, pp. 923–34.

    Article  CAS  Google Scholar 

  8. X.L. Wang, Y.R. Nan, Z.J. Xie, Y.T. Tsai, J.R. Yang, and C.J. Shang: Mater. Sci. Eng. A, 2017, vol. 702, pp. 196–205.

    Article  CAS  Google Scholar 

  9. P. Haslberger, W. Ernst, C. Schneider, S. Holly, and R. Schnitzer: Weld. World, 2018, vol. 62, pp. 1153–58.

    Article  CAS  Google Scholar 

  10. M.A. Quintana, S. Babu, J. Major, C. Dallam, M. James: International Pipeline Conference, 2010, pp. 599-608.

  11. O. Grong and D.K. Matlock: Int. Met. Rev., 1986, vol. 31, pp. 27–48.

    Article  CAS  Google Scholar 

  12. Z. Zhang and R. Farrar: J. Mater. Sci., 1995, vol. 30, pp. 5581–88.

    Article  CAS  Google Scholar 

  13. Z. Zhang and R. Farrar: Weld J., 1997, vol. 76, p. 183.

    Google Scholar 

  14. J. Sun and S. Lu: Scr. Mater., 2020, vol. 186, pp. 174–79.

    Article  CAS  Google Scholar 

  15. P. Haslberger, S. Holly, W. Ernst, and R. Schnitzer: Weld. World, 2018, vol. 62, pp. 713–19.

    Article  CAS  Google Scholar 

  16. G. Krauss: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 781–92.

    Article  CAS  Google Scholar 

  17. M. Perricone and J. Dupont: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1267–80.

    Article  CAS  Google Scholar 

  18. G. Powell and G. Herfurth: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2775–84.

    Article  CAS  Google Scholar 

  19. E. Keehan, L. Karlsson, and H.O. Andrén: Sci. Technol. Weld. Jt., 2013, vol. 11, pp. 1–8.

    Google Scholar 

  20. E. Keehan, L. Karlsson, H.O. Andrén, and H.K.D.H. Bhadeshia: Sci. Technol. Weld. Jt., 2013, vol. 11, pp. 9–18.

    Article  Google Scholar 

  21. E. Keehan, L. Karlsson, H.O. Andrén, and H.K.D.H. Bhadeshia: Sci. Technol. Weld Jt., 2013, vol. 11, pp. 19–24.

    Article  Google Scholar 

  22. Z. Xie, G. Han, Y. Yu, C. Shang, and R. Misra: Mater Charact., 2019, vol. 153, pp. 208–14.

    Article  CAS  Google Scholar 

  23. H. Beladi, V. Tari, I.B. Timokhina, P. Cizek, G.S. Rohrer, A.D. Rollett, and P.D. Hodgson: Acta Mater., 2017, vol. 127, pp. 426–37.

    Article  CAS  Google Scholar 

  24. X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, and T. Furuhara: Acta Mater., 2018, vol. 144, pp. 601–12.

    Article  CAS  Google Scholar 

  25. N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano: ISIJ Int., 2011, vol. 51, pp. 299–304.

    Article  CAS  Google Scholar 

  26. R. Wei, M. Enomoto, R. Hadian, H. Zurob, and G. Purdy: Acta Mater., 2013, vol. 61, pp. 697–707.

    Article  CAS  Google Scholar 

  27. X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, and T. Furuhara: Acta Mater., 2018, vol. 154, pp. 1–13.

    Article  Google Scholar 

  28. S. Matsuda and Y. Okamura: Trans. Iron Steel Inst. Jpn., 1974, vol. 14, pp. 363–68.

    Article  CAS  Google Scholar 

  29. T. Hara, N. Maruyama, Y. Shinohara, H. Asahi, G. Shigesato, M. Sugiyama, and T. Koseki: ISIJ Int., 2009, vol. 49, pp. 1792–800.

    Article  CAS  Google Scholar 

  30. J.P. Galler, J.N. DuPont, S.S. Babu, and M. Subramanian: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2201–17.

    Article  Google Scholar 

  31. G. Mao, C. Cayron, R. Cao, R. Logé, and J. Chen: Mater Charact., 2018, vol. 145, pp. 516–26.

    Article  CAS  Google Scholar 

  32. B.N. Rao and G. Thomas: Metall. Trans. A, 1980, vol. 11, pp. 441–57.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key R&D Program of China (Nos. 2020YFA0714900), the Defense Industrial Technology Development Program (JCKY2020110B007), and National Natural Science Foundation of China (No. 52031003).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 8, 2021; January 9, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Liu, Q., Cai, Z. et al. Effect of Solidification Segregation on Microstructure and Mechanical Properties of a Ni-Cr-Mo-V Steel Weld Metal. Metall Mater Trans A 53, 1394–1406 (2022). https://doi.org/10.1007/s11661-022-06600-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06600-w

Navigation