Skip to main content
Log in

Effect and Evolution of Oxide Film in the HDH-Ti Powder Surface on Densification Behavior During Sintering

  • Topical Collection: 2021 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, we used hydride-dehydride Ti (HDH-Ti) powders (with the oxygen levels of 0.17 and 0.51 wt pct, respectively) combined with microstructural characterization and thermodynamic analysis to reveal the evolution of surface oxide film and associated densification mechanism during sintering. The results show that the oxide film in the powder surface could start to be dissolved above 500 °C during sintering. Besides, the dissolution behavior of the oxide film was investigated via thermodynamic and kinetic analysis. The high-oxygen Ti-0.51O powders exhibited a lower onset temperature of sintering necking, a higher β phase transus temperature and a lower densification rate within the β phase zone, compared with the low-oxygen Ti-0.17O powders. Fundamentally, this is attributed to the high-concentration gradients of vacancy defect and oxygen atom within the oxide film driven by the gradual oxide-film dissolution to promote the surface diffusion, subsequently leaving the solute oxygen atoms to hinder the following α-to-β phase transition. Due to the grain boundary pinning and diffusional activation energy increase, the higher oxygen atoms dissolved in the Ti matrix delay the bulk and grain boundary diffusion rates, and thus disfavors the final densification at the high-temperature sintering stage. This work affords opportunities to understand the densification mechanism of Ti powder sintering involved with the oxide film in the powder surface, and thus help to benefit the final properties of sintered parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Alabort, D. Putman, and R.C. Reed: Acta Mater., 2015, vol. 95, pp. 428–42.

    CAS  Google Scholar 

  2. A. Devaraj, V.V. Joshi, A. Srivastava, S. Manandhar, V. Moxson, V.A. Duz, and C. Lavender: Nat. Commun., 2016, vol. 7, pp. 1–8.

    Google Scholar 

  3. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free: Int. Met. Rev., 2017, vol. 63, pp. 407–59.

    Google Scholar 

  4. S. Wei, L.J. Huang, X. Li, Y. Jiao, W. Ren, and L. Geng: Metall. Mater. Trans. A., 2019, vol. 50, pp. 3629–45.

    CAS  Google Scholar 

  5. H. Singh, M. Hayat, S. Huang, Y. Sui, and P. Cao: Adv. Powder Mater., 2021, https://doi.org/10.1016/j.apmate.2021.09.001.

    Article  Google Scholar 

  6. Y. Zhou, F. Yang, C.G. Chen, Y.R. Shao, B.X. Lu, T.X. Lu, Y.L. Sui, and Z.M. Guo: J. Alloys Compd., 2021, vol. 885, p. 161006.

    CAS  Google Scholar 

  7. S.D. Luo, B. Liu, J. Tian, and M. Qian: Int. J. Refract. Met. Hard Mater., 2020, vol. 90, p. 105226.

    CAS  Google Scholar 

  8. S.D. Luo, T. Song, S.L. Lu, B. Liu, J. Tian, and M. Qian: J. Alloys Compd., 2020, vol. 836, p. 155526.

    CAS  Google Scholar 

  9. Y.F. Yang and M. Qian: Metall. Mater. Trans. A., 2017, vol. 49, pp. 1–6.

    Google Scholar 

  10. Z.A. Munir: Powder Metall., 2013, vol. 24, pp. 177–80.

    Google Scholar 

  11. G.T. Motsi, S. Guillemet-Fritsch, G. Chevallier, M.B. Shongwe, P.A. Olubambi, and C. Estournès: Powder Technol., 2019, vol. 345, pp. 415–24.

    CAS  Google Scholar 

  12. Q.Y. Tao, Z.W. Wang, G. Chen, W. Cai, P. Cao, C. Zhang, W.W. Ding, X. Lu, T. Luo, X.H. Qu, and M.L. Qin: Addit. Manuf., 2020, vol. 34, p. 101198.

    CAS  Google Scholar 

  13. W.W. Ding, G. Chen, M.L. Qin, Y.H. He, and X. Qu: Powder Technol., 2019, vol. 350, pp. 117–22.

    CAS  Google Scholar 

  14. W.W. Ding, Z.W. Wang, G. Chen, W. Cai, C. Zhang, Q.Y. Tao, X.H. Qu, and M.L. Qin: Corros. Sci., 2021, vol. 178, p. 109080.

    CAS  Google Scholar 

  15. E. Hryha, R. Shvab, M. Bram, M. Bitzer, and L. Nyborg: Appl. Surf. Sci., 2016, vol. 388, pp. 294–303.

    CAS  Google Scholar 

  16. Q.Y. Tao, W.W. Ding, G. Chen, X.H. Qu, and M.L. Qin: Scripta Mater., 2022, vol. 210, p. 114471.

    CAS  Google Scholar 

  17. E.W. Lui, S. Palanisamy, M.S. Dargusch, and K. Xia: Metall. Mater. Trans. A., 2017, vol. 48, pp. 5978–89.

    CAS  Google Scholar 

  18. D.Y. Li, H. He, J. Lou, Y.M. Li, Z.Y. He, Y.Z. Chen, and F.H. Luo: Powder Technol., 2020, vol. 361, pp. 617–23.

    CAS  Google Scholar 

  19. S.J.L. Kang: Sintering: Densification, Grain Growth, and Microstructure, Elsevier, Amsterdam, 2005.

    Google Scholar 

  20. R.M. German: Sintering Theory and Practice, Wiley, New York, 1996.

    Google Scholar 

  21. Y. Bing, M.R. Matsen, and D.C. Dunand: Metall. Mater. Trans. A., 2012, vol. 43, pp. 381–90.

    Google Scholar 

  22. B. Sun, S.F. Li, H. Imai, T. Mimoto, J. Umeda, and K. Kondoh: Mater. Sci. Eng. A., 2013, vol. 563, pp. 95–100.

    CAS  Google Scholar 

  23. K. Kondoh, A. Issariyapat, J. Umeda, and P. Visuttipitukul: Mater. Sci. Eng. A., 2020, vol. 790, p. 39641.

    Google Scholar 

  24. C. Wang, Y. Zhang, Y. Wei, L. Mei, S. Xiao, and Y. Chen: Powder Technol., 2016, vol. 302, pp. 423–25.

    CAS  Google Scholar 

  25. D.N.G. Krishna, R.P. George, and J. Philip: Thin Solid Films., 2019, vol. 681, pp. 58–68.

    CAS  Google Scholar 

  26. S. Mendis, W. Xu, H.P. Tang, L.A. Jones, D. Liang, R. Thompson, P. Choong, M. Brandt, and M. Qian: Appl. Surf. Sci., 2020, vol. 506, p. 145013.

    CAS  Google Scholar 

  27. R. Williams, M. Bilton, N. Harrison, and P. Fox: Addit. Manuf., 2021, vol. 46, p. 102181.

    CAS  Google Scholar 

  28. J. Wendel, S.K. Manchili, Y. Cao, E. Hryha, and L. Nyborg: Surf. Interface Anal., 2020, vol. 52, pp. 1061–65.

    CAS  Google Scholar 

  29. Y. Kim, J. Lee, B. Lee, H.J. Ryu, and S.H. Hong: Metall. Mater. Trans. A., 2016, vol. 47, pp. 4616–24.

    CAS  Google Scholar 

  30. S. Baselli, E. Torresani, M. Zago, S. Amirabdollahian, I. Cristofolini, and A. Molinari: Powder Metall., 2018, vol. 61, pp. 276–84.

    CAS  Google Scholar 

  31. B.B. Panigrahi, M.M. Godkhindi, K. Das, P.G. Mukunda, and P. Ramakrishnan: Mater. Sci. Eng. A., 2005, vol. 396, pp. 255–62.

    Google Scholar 

  32. H. Okamoto: J. Phase Equilib. Diffus., 2011, vol. 32, pp. 473–74.

    CAS  Google Scholar 

  33. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart: Acta Mater., 2011, vol. 59, pp. 6318–30.

    Google Scholar 

  34. Y. Mizuno, F.K. King, Y. Yamauchi, T. Homma, A. Tanaka, Y. Takakuwa, and T. Momose: J. Vac. Sci. Technol. A., 2002, vol. 20, pp. 1716–21.

    CAS  Google Scholar 

  35. H. Mehrer: Diffusion in Solids: Fundamentals Methods Materials, Diffusion-Controlled Processes, Springer, Berlin, 2007.

    Google Scholar 

  36. Y. Takahashi, T. Nakamura, and K. Nishiguchi: J. Mater. Sci., 1992, vol. 27, pp. 485–98.

    CAS  Google Scholar 

  37. R.M. German: Int. J. Refract. Met. Hard Mater., 2020, vol. 89, p. 105214.

    CAS  Google Scholar 

  38. X. Xu and P. Nash: Mater. Sci. Eng. A., 2014, vol. 607, pp. 409–16.

    CAS  Google Scholar 

  39. T. Chen, C. Yang, Z. Liu, H.W. Ma, L.M. Kang, Z. Wang, W.W. Zhang, D.D. Li, N. Li, and Y.Y. Li: J. Alloys Compd., 2021, vol. 873, p. 159792.

    CAS  Google Scholar 

  40. H.S. Jang, C.J. Van Tyne, and W.H. Lee: Met. Mater. Int., 2019, vol. 25, pp. 991–99.

    CAS  Google Scholar 

  41. R. Li: Adv. Mater. Res., 2014, vol. 1053, pp. 80–86.

    Google Scholar 

  42. Z. Liu and G. Welsch: Metall. Mater. Trans. A., 1988, vol. 19, pp. 1121–25.

    Google Scholar 

  43. M. Song, S. Han, D. Min, G. Choi, and J. Park: Scripta Mater., 2008, vol. 59, pp. 623–26.

    CAS  Google Scholar 

  44. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian: Powder Metall., 2014, vol. 57, pp. 251–57.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Key Research and Development Program of China (No.: 2021YFB3701900), National Natural Science Foundation of China (No.: 51971036), and Shandong Provincial Key Research and Development Program (No.: 2019JZZY010327). The authors are grateful for the technical assistance of Dr. Cong Zhang at University of Science and Technology Beijing, P.R. China. We also appreciate the support of Shanghai Synchrotron Radiation Facility for providing the beam time for the synchrotron X-ray CT work conducted on the BL13W1 beamline.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, F., Ding, W., Tao, Q. et al. Effect and Evolution of Oxide Film in the HDH-Ti Powder Surface on Densification Behavior During Sintering. Metall Mater Trans A 53, 1164–1175 (2022). https://doi.org/10.1007/s11661-022-06598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06598-1

Navigation