Skip to main content
Log in

Creep and Oxidation Behavior of GTAW Welded ET45 Micro Alloy Tube

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ethylene pyrolysis furnace tubes are subjected to a variety of failure mechanisms such as creep, oxidation, carburization, and thermal shock. Therefore, proper selection of filler metal and welding process is important in their repair process. In this work, the effect of UTP 2535 Nb and UTP 3545 Nb filler metals on the microstructure, creep behavior, and oxidation resistance of Gas Tungsten Arc WeldedET45 Micro alloy tube is investigated. Based on the results, the microstructure of the joint welded with UTP 2535 Nb filler metal is composed of Chromium and Niobium carbides deposited along the dendritic grain boundaries of the austenitic matrix. The joint welded with UTP 3545Nb filler showed a similar structure, except for denser and more continuous carbides. Compared to the base metal, the weld zone of both samples showed higher hardness values which can be explained by the finer grain size and continuous carbide networks. Also, the higher Chromium content of UTP 3545 Nb filler metal resulted in higher carbide content and higher hardness than the joint welded with UTP 2535 Nb. Tension test results showed that in both specimens, fracture occurred in the base metal. Both samples delivered the same properties in terms of elongation, yield strength, and tensile strength, which were dictated by the mechanical properties of the base metal. In all temperatures, the joint welded with UTP 2535 Nb filler metal exhibited higher rupture time and creep resistance than the specimen welded with UTP 3545 Nb filler metal. It can be attributed to the continuous inter-dendritic carbides in the weld zone of the latter sample; cracks are prone to propagate along the carbides/dendrites interface during the creep test. Based on the oxidation test results, the joint welded with UTP 3545 Nb filler metal showed lower mass gain (3.6 mg cm−2) and oxide thickness (11 µm) compared to the joint welded with UTP 2535 Nb filler (4.3 mg cm−2 and 20 µm, respectively).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z. Zhao, K. Chong, J. Jiang, K. Wilson, X. Zhang, and F. Wang: Renew. Sustain. Energy Rev., 2018, vol. 97, pp. 580–91.

    Article  CAS  Google Scholar 

  2. A. Chauhan, M. Anwar, K. Montero, H. White, and W. Si: J. Phase Equilib. Diffus., 2006, vol. 27, pp. 684–90.

    Article  CAS  Google Scholar 

  3. ΗΜ Τawancy: Eng. Fail. Anal., 2009, vol. 16, pp. 2171–78.

    Article  Google Scholar 

  4. B. Hu, X. Chen, C. Liu, X. Lian, and T. Chen: Mater. High Temp., 2019, vol. 36, pp. 489–98.

    Article  Google Scholar 

  5. A. Sharma, S. Kumar, Z. Duriagina: Engineering Steels and High Entropy-Alloys. BoD–Books on Demand, 2020.

  6. S. Borjali, S.R. Allahkaram, and H. Khosravi: Mater. Des., 2012, vol. 34, pp. 65–73.

    Article  CAS  Google Scholar 

  7. J. Guo, T. Cao, C. Cheng, X. Meng, and J. Zhao: Eng. Fail. Anal., 2020, 104610.

  8. M.N. Ilman: Eng. Fail. Anal., 2014, vol. 42, pp. 100–08.

    Article  CAS  Google Scholar 

  9. S.H. Khodamorad, D.H. Fatmehsari, H. Rezaie, and A. Sadeghipour: Eng. Fail. Anal., 2012, vol. 21, pp. 1–8.

    Article  CAS  Google Scholar 

  10. K. Shiga, Y. Hara, E. Yamamoto: in: ASME Pressure Vessels and Piping Conference, 2008, vol. 48302, pp. 433–38.

  11. K.D. Ramkumar, N. Arivazhagan, and S. Narayanan: Mater. Des., 2012, vol. 40, pp. 70–79.

    Article  Google Scholar 

  12. A. Reihani, S.A. Razavi, E. Abbasi, and A.R. Etemadi: J. Fail. Anal. Prev., 2013, vol. 13, pp. 658–65.

    Article  Google Scholar 

  13. J. Guo, C. Cheng, H. Li, J. Zhao, and X. Min: Eng. Fail. Anal., 2017, vol. 79, pp. 625–33.

    Article  CAS  Google Scholar 

  14. C. Liu, X. Chen, T. Chen, D. Nie, and L. Wang: Mater. High Temp., 2016, vol. 33, pp. 98–104.

    Article  CAS  Google Scholar 

  15. J. Sun, W. Ren, P. Nie, J. Huang, K. Zhang, and Z. Li: Mater. Design., 2019, vol. 175, p. 107823.

    Article  Google Scholar 

  16. J. Guo, W. Liu, C. Li, and X. Zhang: Metall. Res. Technol., 2020, vol. 117, pp. 612–20.

    Article  CAS  Google Scholar 

  17. J. Guo, T. Cao, C. Cheng, X. Meng, and J. Zhao: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 449–53.

    Article  CAS  Google Scholar 

  18. A. Reihani and R.D. Haghighi: Eng. Fail. Anal., 2015, vol. 52, pp. 97–108.

    Article  CAS  Google Scholar 

  19. S.R. Allahkaram, S. Borjali, and H. Khosravi: Mater. Des., 2012, vol. 33, pp. 476–84.

    Article  CAS  Google Scholar 

  20. S.L. Jeng and Y.H. Chang: Mater. Sci. Eng. A., 2012, vol. 555, pp. 1–2.

    Article  CAS  Google Scholar 

  21. N. Taheri, H. Naffakh-Moosavy, and F.M. Ghaini: Opt. Laser Technol., 2017, vol. 91, pp. 71–79.

    Article  CAS  Google Scholar 

  22. K. Nomura, K. Kubushiro, H. Nakagawa, and Y. Murata: Mater. Trans., 2016, vol. 57, pp. 2097–2103.

    Article  CAS  Google Scholar 

  23. A.K. Lakshminarayanan, K. Shanmugam, and V. Balasubramanian: J. Iron. Steel Res. Int., 2009, vol. 16, pp. 62–68.

    Article  CAS  Google Scholar 

  24. Y.C. Lin, L. Li, D.G. He, M.S. Chen, and G.Q. Liu: Mater. Sci. Eng. A., 2017, vol. 679, pp. 401–09.

    Article  CAS  Google Scholar 

  25. Z. Li, Z. Wen, S. Gu, H. Pei, H. Gao, and Q. Mao: J. Alloy. Compd., 2019, vol. 793, pp. 65–76.

    Article  CAS  Google Scholar 

  26. L. Cao, G. Xie, Z. Han, F. Zhuang: Effect of Carburization on Creep Performance of Cr35Ni45Nb Heat Resistant Alloy, Vessels and Piping Conference American Society of Mechanical Engineers, 2018, pp. 51678.

  27. L. Cui, H. Su, J. Yu, J. Liu, T. Jin, and X. Sun: Mater. Sci. Eng. A., 2017, vol. 707, pp. 383–91.

    Article  CAS  Google Scholar 

  28. W.Z. Wang, F.Z. Xuan, Z.D. Wang, B. Wang, and C.J. Liu: Mater. Des., 2011, vol. 32, pp. 4010–16.

    Article  CAS  Google Scholar 

  29. A.R. Andrade, C. Bolfarini, L.A. Ferreira, C.D. Souza Filho, and L.H. Bonazzi: Mater. Sci. Eng. A., 2015, vol. 636, pp. 48–52.

    Article  CAS  Google Scholar 

  30. Y. Li, X. Fan, H. Cui, F. Lu, and X. Tang: The correlated mechanism of creep fracture and microstructure evolution for precipitated Nimonic 263 superalloy welding joint. Sci. Technol. Weld. Join., 2020, vol. 26, pp. 37–46.

    Article  Google Scholar 

  31. T. Dudziak, K. Jura, A. Polkowska, V. Deodeshmukh, M. Warmuzek, M. Witkowska, W. Ratuszek, and K. Chruściel: Oxid. Met., 2018, vol. 89, pp. 755–79.

    Article  CAS  Google Scholar 

  32. R. Song and S. Wu: Eng. Fail. Anal., 2018, vol. 88, pp. 63–72.

    Article  CAS  Google Scholar 

  33. P. Berthod and E. Conrath: Mater. Des., 2016, vol. 104, pp. 27–36.

    Article  CAS  Google Scholar 

  34. M.A. Razmjoo-Khollari, M.K. Azar, M. Esmaeili, N. Malekpour, S.M. Hosseini-Hosseinabad, R.S. Moakhar, A. Dolati, and S. Ramakrishna: ACS Appl. Energy Mater., 2021, vol. 4, p. 5304.

    Article  CAS  Google Scholar 

  35. A. Bakhshi-Zadeh, S. Salmani, M.A. Faghihi-Sani, H. Abdoli, and N. Jalili: Oxid. Met., 2020, vol. 93, pp. 1–5.

    Article  Google Scholar 

  36. A.A. Kaya, P. Krauklis, and D.J. Young: Mater. Charact., 2002, vol. 49, pp. 11–21.

    Article  CAS  Google Scholar 

  37. E. Bahmani, A. Zakeri, and A.S. Aghdam: Surf. Interfaces., 2021, vol. 26, p. 101288.

    Article  CAS  Google Scholar 

  38. S. Guo, D. Xu, N. Wei, Y. Wang, G. Chen, and S. Wang: Ind. Eng. Chem. Res., 2020, vol. 59, pp. 10278–88.

    Article  CAS  Google Scholar 

  39. Y. Nishiyama, N. Otsuka, and T. Nishizawa: Corrosion., 2003, vol. 59, pp. 688–700.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support from Islamic Azad University for providing the funding for this research.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Derakhshandeh-Haghighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 22, 2021; accepted January 5, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadizadeh, E., Derakhshandeh-Haghighi, R., Rabiezadeh, A. et al. Creep and Oxidation Behavior of GTAW Welded ET45 Micro Alloy Tube. Metall Mater Trans A 53, 1361–1378 (2022). https://doi.org/10.1007/s11661-022-06595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06595-4

Navigation