Skip to main content

Advertisement

Log in

Modeling the Tensile Strain Hardening Behavior of a Metastable AISI 301LN Austenitic Stainless Steel Pre-strained in Compression

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Boltzmann-type sigmoidal equations to model the tensile strain hardening and flow stress behavior of a metastable AISI 301LN austenitic stainless steel subjected to prior cold deformation have been developed. This model can be used in the numerical simulation of the energy absorbed by structures fabricated using this steel during collision events. In addition, it can also be used to establish the maximum allowable prior compressive strain through cold rolling which will result in a steel capable of adequate energy absorption. It was found that the compressive pre-strain had a strong effect on increasing the initial martensite content, increasing the tensile yield strength but reducing the ability of the material to absorb energy during subsequent tensile straining. In order to produce AISI 301LN crash-relevant structures for a vehicle, a cold rolling thickness reduction in the order of 20 pct or lower must be employed. This will result in the mechanical energy absorbed by the material of at least 210 MJ/m3 in the event of a collision. The tensile strain hardening curves established for the pre-strained steel confirmed a high-strength coefficient value in the range of 1770 to 1790 MPa for the AISI 301LN steel at 30 °C. Neutron diffraction work, coupled with Electron backscatter diffraction (EBSD) analyses, studied the γα′ and ɛ martensitic transformation during compressive pre-straining, in order to explain the subsequent tensile strain hardening effects observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13, pp. 627–35.

    Article  CAS  Google Scholar 

  2. T.W. Mukarati, R.J. Mostert, and C.W. Siyasiya: IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 655, p. 012008.

  3. D.P. Rao Palaparti, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan, and M.D. Mathew: Mater. Sci. Eng. A, 2012, vol. 538, pp. 110–17.

  4. L.P. Karjalainen, T. Taulavuori, M. Sellman, and A. Kyröläinen: Steel Res. Int., 2008, vol. 79, pp. 404–12.

    Article  CAS  Google Scholar 

  5. S.H. Li, W.J. Dan, W.G. Zhang, and Z.Q. Lin: Comput. Mater. Sci., 2007, vol. 40, pp. 292–99.

    Article  CAS  Google Scholar 

  6. K.K. Singh: Mater. Sci. Technol., 2004, vol. 20, pp. 1134–42.

    Article  CAS  Google Scholar 

  7. T.W. Mukarati, R.J. Mostert, and C.W. Siyasiya: Mater. Sci. Eng. A, 2020, vol. 792, p. 139741.

  8. M. Cohen and G.B. Olson: Metall. Trans. A., 1975, vol. 6A, pp. 791–95.

    Google Scholar 

  9. H.C. Shin, T.K. Ha, and Y.W. Chang: Scr. Mater., 2001, vol. 45, pp. 823–29.

    Article  CAS  Google Scholar 

  10. P. Santacreu, J. Glez, G. Chinouilh, and T. Frohlich: Steel Res. Int., 2006, vol. 77, pp. 686–91.

    Article  CAS  Google Scholar 

  11. N. Tsuchida, Y. Yamaguchi, Y. Morimoto, T. Tonan, Y. Takagi, and R. Ueji: ISIJ Int., 2013, vol. 53, pp. 1881–87.

    Article  CAS  Google Scholar 

  12. N. Tsuchida, T. Kawahata, E. Ishimaru, and A. Takahashi: ISIJ Int., 2014, vol. 54, pp. 1971–77.

    Article  CAS  Google Scholar 

  13. P.M. Ahmedabadi, V. Kain, and A. Agrawal: Mater. Des., 2016, vol. 109, pp. 466–75.

    Article  CAS  Google Scholar 

  14. S.S.M. Tavares, J.M. Pardal, M.J. Gomes, H.F.G. Abreu, and M.R. Silva: Mater. Charact., 2009, vol. 60, pp. 907–11.

    Article  CAS  Google Scholar 

  15. M. Naghizadeh and H. Mirzadeh: Vacuum., 2018, vol. 157, pp. 243–48.

    Article  CAS  Google Scholar 

  16. F. Peng, X. Dong, K. Liu, and H. Xie: J. Iron Steel Res. Int., 2015, pp. 931–36.

  17. T.W. Mukarati, R.J. Mostert, and C.W. Siyasiya: Steel Res. Int., 2021, vol. 2100459, pp. 1–14.

    Google Scholar 

  18. A.M. Beese and D. Mohr: in SEM 2009 Annu. Conf. Expo. Exp. Appl. Mech. Albuquerque New Mex., 2009, vol. 2009, pp. 1–7.

  19. J. Talonen, P. Aspegren, and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp. 1506–12.

    Article  CAS  Google Scholar 

  20. T.W. Mukarati, R.J. Mostert, and C.W. Siyasiya: Mater. Sci. Eng. Conf. Ser., 2018, vol. 430, p. 12042.

    Article  Google Scholar 

  21. T.W. Mukarati: PhD Thesis, UPSpace, University of Pretoria, 2020.

  22. G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-vaghefi: Mater. Des., 2010, vol. 31, pp. 3395–402.

    Article  CAS  Google Scholar 

  23. G.C. Soares, M.R.M. Carla, and L. De Arruda Santos: Mater. Res., 2017, vol. 20, pp. 141–51.

    Article  Google Scholar 

  24. S. Srikanth, P. Saravanan, V. Kumar, D. Saravanan, L. Sivakumar, S. Sisodia, and K. Ravi: Int. J. Metall. Eng., 2013, vol. 2, pp. 203–13.

    Google Scholar 

  25. B. Mahato, S.K. Shee, T. Sahu, S. Ghosh Chowdhury, P. Sahu, D.A. Porter, and L.P. Karjalainen: Acta Mater., 2015, vol. 86, pp. 69–79.

Download references

Acknowledgments

The authors are grateful to Columbus Stainless Steel (Pty) Ltd for financial support as well as providing the material, Department of Science and Technology, S.A. Government, through their AMI - FMDN (Advanced Materials Initiative - Ferrous Metals Development Network) programme, administered by Mintek, for financially supporting this work, and NECSA for their neutron diffraction service and assistance. The assistance of Prof Johan de Villiers in the interpretation of neutron diffraction data is gratefully acknowledged.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulani W. Mukarati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukarati, T.W., Mostert, R.J., Siyasiya, C.W. et al. Modeling the Tensile Strain Hardening Behavior of a Metastable AISI 301LN Austenitic Stainless Steel Pre-strained in Compression. Metall Mater Trans A 53, 1322–1335 (2022). https://doi.org/10.1007/s11661-022-06592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06592-7

Navigation