Skip to main content
Log in

First-Principles Investigation of the Interfacial Stability, Precipitate Formation, and Mechanical Behavior of Al3Li/Al3Zr/Al Interfaces

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Precipitates including Al3Li, Al3Zr and core–shell structured Al3Li (Al3Zr) produce significant strengthening effects in Al-Li alloys by means of anti-phase boundaries and dislocation looping. However, the precipitate/metal interfacial structures and precipitate formation mechanisms in Al-Li alloys remain unclear due to the lack of advanced experimental methods. In this work, atomic-scale structural models of Al3Li/Al, Al3Zr/Al, and Al3Li/Al3Zr interfaces are created, while bridge-, top-, hollow-, and center-stacking sequences are applied, respectively. Within these models, Al slabs with 5 atom layers and Al3Li and/or Al3Zr slabs with 6 atom layers are selected in which interfacial orientations of (100), (110), and (111) are considered. For the Al3Li/Al, Al3Zr/Al, and Al3Li/Al3Zr interfaces, the structural models with bridge- and hollow-stacking sequences generate the most stable energy-based interfaces. Moreover, the nucleation free energies of the core-shell structured Al3Zr(Al3Li) are larger than those of the isolated Al3Li+Al3Zr and core-shell structured Al3Li(Al3Zr), leading to the absence of the core-shell structured Al3Zr(Al3Li) in most experimental observations. Further studies of the uniaxial tensile mechanical properties of the Al3Li/Al, Al3Zr/Al, and Al3Li/Al3Zr interfaces revealed that the Al3Zr/Al interfaces possess larger Young’s moduli and tensile strengths than those of the Al3Li/Al and Al3Li/Al3Zr interfaces. In conclusion, the interfacial stability, precipitate formation and mechanical behaviors of Al3Li/Al3Zr/Al interfaces are elucidated for the development of Al-Li alloys and their composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Abd El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, and D. Chen: J. Adv. Res., 2018, vol. 10, pp. 49–67.

    Article  CAS  Google Scholar 

  2. K.K. Sankaran and N.J. Grant: Mater. Sci. Eng., 1980, vol. 44, pp. 213–27.

    Article  CAS  Google Scholar 

  3. R.J. Rioja and J. Liu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3325–37.

    Article  Google Scholar 

  4. P. Gomiero, Y. Brechet, F. Louchet, A. Tourabi, and B. Wack: Acta Metall. Mater., 1992, vol. 40, pp. 857–61.

    Article  CAS  Google Scholar 

  5. M.J. Starink, P. Wang, I. Sinclair, and P.J. Gregson: Acta Mater., 1999, vol. 47, pp. 3841–53.

    Article  CAS  Google Scholar 

  6. S.V. Nair, J.K. Tien, and R.C. Bates: Int. Met. Rev., 1985, vol. 30, pp. 275–90.

    Article  CAS  Google Scholar 

  7. P. Poza and J. Llorca: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 845–55.

    CAS  Google Scholar 

  8. M. Furukawa, Y. Miura, and M. Nemoto: Trans. Japan Inst. Met., 1985, vol. 26, pp. 230–5.

    Article  CAS  Google Scholar 

  9. C. Qiu, Y. Su, B. Chen, J. Yang, Z. Li, Q. Ouyang, Q. Guo, D. Xiong, and D. Zhang: Comput. Mater. Sci., 2020, vol. 175, p. 109608.

    Article  CAS  Google Scholar 

  10. Y. Wang, Z.K. Liu, L.Q. Chen, and C. Wolverton: Acta Mater., 2007, vol. 55, pp. 5934–47.

    Article  CAS  Google Scholar 

  11. Y.F. Han, Y.B. Dai, J. Wang, D. Shu, and B.D. Sun: Appl. Surf. Sci., 2011, vol. 257, pp. 7831–6.

    Article  CAS  Google Scholar 

  12. Z. Mao, W. Chen, D.N. Seidman, and C. Wolverton: Acta Mater., 2011, vol. 59, pp. 3012–23.

    Article  CAS  Google Scholar 

  13. S. Wang, C. Zhang, X. Li, H. Huang, and J. Wang: J. Mater. Sci. Technol., 2020, vol. 58, pp. 205–14.

    Article  Google Scholar 

  14. W. Zhao, Z. Sun, and S. Gong: Acta Mater., 2017, vol. 135, pp. 25–34.

    Article  CAS  Google Scholar 

  15. G. Kresse and J. Furthmüller: Phys. Rev. B., 1996, vol. 54, p. 11169.

    Article  CAS  Google Scholar 

  16. J.P. Perdew and Y. Wang: Phys. Rev. B, 1992, vol. 45, pp. 13244–9.

    Article  CAS  Google Scholar 

  17. P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith: J. Phys.: Condens. Matter., 1989, vol. 1, p. 1941.

    CAS  Google Scholar 

  18. H.J. Monkhorst and J.D. Pack: Phys. Rev. B., 1976, vol. 13, pp. 5188–92.

    Article  Google Scholar 

  19. L. Fu, J.-L. Ke, Q. Zhang, B.-Y. Tang, L.-M. Peng, and W.-J. Ding: Phys. Status Solidi B, 2012, vol. 249, pp. 1510–6.

    Article  CAS  Google Scholar 

  20. Z. Li and J.S. Tse: Phys. Rev. B, 2000, vol. 61, pp. 14531–6.

    Article  CAS  Google Scholar 

  21. E. Nes: Acta Metall., 1972, vol. 20, pp. 499–506.

    Article  CAS  Google Scholar 

  22. J. Yang, P. Zhang, Y. Zhou, J. Guo, X. Ren, Y. Yang, and Q. Yang: J. Alloy Compd., 2013, vol. 556, pp. 160–6.

    Article  CAS  Google Scholar 

  23. L.M. Liu, S.Q. Wang, and H.Q. Ye: Acta Mater., 2004, vol. 52, pp. 3681–8.

    Article  CAS  Google Scholar 

  24. J. Yang, J. Huang, D. Fan, and S. Chen: J. Alloy Compd., 2016, vol. 689, pp. 874–84.

    Article  CAS  Google Scholar 

  25. J. Li, Y. Yang, G. Feng, X. Luo, Q. Sun, and N. Jin: Appl. Surf. Sci., 2013, vol. 286, pp. 240–8.

    Article  CAS  Google Scholar 

  26. R. Poduri and L.-Q. Chen: Acta Mater., 1998, vol. 46, pp. 3915–28.

    Article  CAS  Google Scholar 

  27. S.F. Baumann and D.B. Williams: Scr. Metall., 1984, vol. 18, pp. 611–6.

    Article  CAS  Google Scholar 

  28. J.J.H.S. Spooner: Acta Metall. Mater., 1991, vol. 39, pp. 689–93.

    Article  Google Scholar 

  29. K. Knipling: Acta Mater., 2008, vol. 56, pp. 1182–95.

    Article  CAS  Google Scholar 

  30. C. Zhang, Y. Jiang, F. Cao, T. Hu, Y. Wang, and D. Yin: J. Mater. Sci. Technol., 2019, vol. 35, pp. 930–8.

    Article  Google Scholar 

  31. C. Zhang, Y. Jiang, X. Guo, and K. Song: Acta Metall. Sin. (English Lett.), 2020, vol. 33, pp. 1627–34.

    Article  CAS  Google Scholar 

  32. C. Zhang, D. Yin, Y. Jiang, and Y. Wang: Comput. Mater. Sci., 2019, vol. 162, pp. 171–7.

    Article  CAS  Google Scholar 

  33. S.-S. Li, L. Li, J. Han, C.-T. Wang, Y.-Q. Xiao, X.-D. Jian, P. Qian, and Y.-J. Su: Appl. Surf. Sci., 2020, vol. 526, p. 146455.

    Article  CAS  Google Scholar 

  34. L.A.H. Terrones and S.N. Monteiro: Mater. Charact., 2007, vol. 58, pp. 156–61.

    Article  CAS  Google Scholar 

  35. A. Chen, Y. Peng, L. Zhang, G. Wu, and Y. Li: Mater. Charact., 2016, vol. 114, pp. 234–42.

    Article  CAS  Google Scholar 

  36. L. Wu, Q. Wang, S. Shu, Y. Li, X. Li, and H. Wang: Mater. Sci. Eng. A, 2021, vol. 806, p. 140607.

    Article  CAS  Google Scholar 

  37. S. Shi, S. Tanaka, and M. Kohyama: Phys. Rev. B, 2007, vol. 76, p. 075431.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support of the National Natural Science Foundation of China (Nos. 52192595, 51971132), the National Key Research and Development Program of China (No. 2018YFB0704400), and the Interdisciplinary Program of Shanghai Jiao Tong University (Project Number ZH2018QNA15).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yishi Su or Di Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 21, 2021; accepted December 29, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 3774 KB)

Supplementary file2 (MP4 3718 KB)

Supplementary file3 (MP4 3974 KB)

Supplementary file4 (PDF 861 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, C., Su, Y., Yang, J. et al. First-Principles Investigation of the Interfacial Stability, Precipitate Formation, and Mechanical Behavior of Al3Li/Al3Zr/Al Interfaces. Metall Mater Trans A 53, 1308–1321 (2022). https://doi.org/10.1007/s11661-022-06591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06591-8

Navigation