Skip to main content

Advertisement

Log in

Theoretical Study of Plastic Deformation Features in Nonequilibrium Nanostructural States of Metallic Materials with a High Lattice Curvature

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Within the continuum theory of defects, a model of a disclination defect continuously distributed in space is presented. On the basis of this model and the results of an electron microscopic study, the features of nanostructural states with a high curvature of the crystal lattice in niobium are analyzed. The spatial distributions of stress fields and energies of such states at the nanoscale structural level are constructed. It is found that the energy distribution is characterized by highly localized extrema, in which the maximum energy per atom is multiple (more than 2 times) higher than the activation energy of self-diffusion processes. An energy criterion for a high-energy state is proposed, which consists in the fact that the energy of such states normalized to an atom is comparable to or exceeds the activation energy of various processes of structural-phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Nye: Acta metall., 1953, vol. 1, pp. 153–62. https://doi.org/10.1016/0001-6160(53)90054-6.

    Article  CAS  Google Scholar 

  2. M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399–424. https://doi.org/10.1080/14786437008238426.

    Article  CAS  Google Scholar 

  3. A.N. Tyumentsev, I.A. Ditenberg, A.D. Korotaev, and K.I. Denisov: Phys. Mesomech., 2013, vol. 16, pp. 319–34. https://doi.org/10.1134/s1029959913040061.

    Article  Google Scholar 

  4. A.E. Romanov, V.I. Vladimirov: Dislocation in solids, in: F.R.N. Nabarro (Ed.), North-Holland, Amsterdam, 1992, vol. 9, pp. 191–402.

  5. M.Y. Gutkin, A.L. Kolesnikova, I.A. Ovid’ko, and N.V. Skiba: Philos. Mag. Lett., 2002, vol. 82, pp. 651–57. https://doi.org/10.1080/0950083021000036742.

    Article  CAS  Google Scholar 

  6. A.E. Romanov, A.L. Kolesnikova, I.A. Ovidko, and E.C. Aifantis: Mater. Sci. Eng. A., 2009, vol. 503, pp. 62–67. https://doi.org/10.1016/j.msea.2008.05.053.

    Article  CAS  Google Scholar 

  7. A.A. Nazarov, O.A. Shenderova, and D.W. Brenner: Mater. Sci. Eng. A., 2000, vol. 281, pp. 148–55. https://doi.org/10.1016/s0921-5093(99)00727-3.

    Article  Google Scholar 

  8. R. de Wit: Linear theory of static disclinations, in: J.A. Simmons, R. de Wit (Eds.), Fundamental aspects of dislocation, National Bureau of Standards, Houston, 1970, vol. 2, pp. 651–73.

  9. E. Kröner: Arch. Ration. Mech. Anal., 1959, vol. 4, pp. 273–334. https://doi.org/10.1007/bf00281393.

    Article  Google Scholar 

  10. I.A. Ditenberg, A.N. Tyumentsev, K.I. Denisov, and M.A. Korchagin: Phys. Mesomech., 2013, vol. 16, pp. 84–92. https://doi.org/10.1134/s1029959913010098.

    Article  Google Scholar 

  11. J.D. Eshelby: Solid State Phys., 1956, vol. 3, pp. 79–144. https://doi.org/10.1016/s0081-1947(08)60132-0.

    Article  CAS  Google Scholar 

  12. A.R. Hadjesfandiari and G.F. Dargush: Int. J. Solids Struct., 2011, vol. 48, pp. 2496–4510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.

    Article  Google Scholar 

  13. A.R. Hadjesfandiari and G.F. Dargush, Consistent continuous defect theory. (Preprint arXiv), https://arxiv.org/abs/1808.10744. Accessed 15 August 2018

  14. G. Seber: Linear regression analysis, Wiley, New York, 1977, p. 465.

    Google Scholar 

  15. G.B. Gibbs, D. Graham, and D.H. Tomlin: Philos. Mag., 1963, vol. 8, pp. 1269–82. https://doi.org/10.1080/14786436308207292.

    Article  CAS  Google Scholar 

  16. D. Ablitzee: Philos. Mag., 1977, vol. 35, pp. 1239–56. https://doi.org/10.1080/14786437708232950.

    Article  Google Scholar 

  17. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89. https://doi.org/10.1016/s0079-6425(99)00007-9.

    Article  CAS  Google Scholar 

  18. L.S. Vasil’ev and I.L. Lomaev: Phys. Met. Metallogr., 2011, vol. 111, pp. 1–12. https://doi.org/10.1134/s0031918x11010145.

    Article  Google Scholar 

  19. L.S. Vasil’ev and S.L. Lomaev: Phys. Met. Metallogr., 2016, vol. 118, pp. 700–06. https://doi.org/10.1134/s0031918x17070122.

    Article  CAS  Google Scholar 

  20. A.N. Tyumentsev, I.A. Ditenberg, and I.I. Sukhanov: Russ. Phys. J., 2019, vol. 62, pp. 1313–21. https://doi.org/10.1007/s11182-019-01849-y.

    Article  CAS  Google Scholar 

  21. A.M. Guellil and J.B. Adams: J. Mater. Res., 1992, vol. 7, pp. 639–52. https://doi.org/10.1557/jmr.1992.0639.

    Article  CAS  Google Scholar 

  22. X.Y. Zhang, X.L. Wu, Q. Liu, R.L. Zuo, A.W. Zhu, P. Jiang, and Q.M. Wei: Appl. Phys. Lett., 2008, vol. 93, pp. 031901-1-031901–3. https://doi.org/10.1063/1.2953545.

    Article  CAS  Google Scholar 

  23. S.J. Wang, H. Wang, K. Du, W. Zhang, M.L. Sui, and S.X. Mao: Nat. Commun., 2014, vol. 5, pp. 1–9. https://doi.org/10.1038/ncomms4433.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was performed under the government statement of work for ISPMS SB RAS, Project FWRW-2021-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan I. Sukhanov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhanov, I.I., Ditenberg, I.A. Theoretical Study of Plastic Deformation Features in Nonequilibrium Nanostructural States of Metallic Materials with a High Lattice Curvature. Metall Mater Trans A 53, 1244–1252 (2022). https://doi.org/10.1007/s11661-021-06585-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06585-y

Navigation