Skip to main content

Advertisement

Log in

Mechanism of Microarc Oxidation Treated Ti6Al4V Alloy in a Magnetic Field

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth kinetics mechanism of microarc oxidation (MAO) coatings on Ti6Al4V alloy in a magnetic field with a low current density of 2 A/dm2 was studied using scanning electron microscopy, energy dispersive spectroscopy, atomic force microscope, X-ray diffraction, and potentiodynamic polarization. The results show that the magnetohydrodynamics effect increased the electron current density during the MAO process. Then, a higher breakdown voltage of the anodic oxide film, faster growth of the MAO coatings, stronger and more concentrated microarc are obtained. Consequently, thick uneven coatings with high content of co-deposition oxides were obtained on samples rotating at 500 r/min in the magnetic field, resulting in uneven dense layer and poor corrosion resistance of the coating; the thin uniform coatings with a few co-deposition oxides were obtained on samples rotating at 3500 r/min in the magnetic field and also have poor corrosion resistance; both thickness and uniformity of the coatings are improved only for the sample rotating at 1500 r/min, resulting in good corrosion resistance of the coating. The thickness of the MAO coatings obtained on the low-speed rotating samples in the magnetic field increased parabolically with time, whereas that on high-speed rotating samples tends to increase linearly with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Ellyson, J. Klemm-Toole, K. Clarke, R. Field, and M. Kaufman: Scripta. Mater., 2021, vol. 194, p. 113641.

    Article  CAS  Google Scholar 

  2. S. Liao, C. Chang, C. Chen, C.H. Lee, and W.L. Lin: Surf. Coat. Tech., 2020, vol. 394, p. 125812.

    Article  CAS  Google Scholar 

  3. L. Choisez, L. Ding, M. Marteleur, H. Idrissi, T. Pardoen, and P.J. Jacques: Nat. Commun., 2020, vol. 11, p. 2110.

    Article  CAS  Google Scholar 

  4. F. Cheng, S. Li, W. Gui, and J. Lin: Prog. Nat. Sci., 2018, vol. 28, pp. 386–90.

    Article  CAS  Google Scholar 

  5. Y. Mao, J. Yan, L. Wang, W. Dong, Y. Jia, X. Hu, and X. Wang: Ceram. Int., 2018, vol. 44, pp. 12978–86.

    Article  CAS  Google Scholar 

  6. A. Jangde, S. Kumar, and C. Blawert: Corros. Sci., 2019, vol. 157, pp. 220–46.

    Article  CAS  Google Scholar 

  7. A. Fattah-alhosseini, M. Molaei, N. Attarzadeh, K. Babaei, and F. Attarzadeh: Ceram. Int., 2020, vol. 46, pp. 20587–607.

    Article  CAS  Google Scholar 

  8. B. Mingo, Y. Guo, A. Němcová, A. Gholinia, M. Mohedano, M. Sun, A. Matthews, and A. Yerokhin: Electrochim. Acta., 2019, vol. 299, pp. 772–88.

    Article  CAS  Google Scholar 

  9. M. Kaseem and H.C. Choe: Corros. Sci., 2021, vol. 192, p. 109764.

    Article  CAS  Google Scholar 

  10. M.J. Hwang, H.R. Choi, H.J. Song, and Y.J. Park: J. Alloys Compd., 2018, vol. 732, pp. 95–106.

    Article  CAS  Google Scholar 

  11. C. Demirbas, A. Ayday: Surf. Eng. 2021, vol. 37, pp. 24–31.

    Google Scholar 

  12. Y.J. Chu, P. Liu, Y.X. Chen, and X.Q. Li: Mater. Res-Ibero-Am. J., 2020, vol. 23, p. e20200002.

    Google Scholar 

  13. A. K. Vijh: Corros. Sci., 1971, vol. 11, pp. 0–167.

  14. J. Yahalom: J. Electrochem. Inc., 1973, vol. 10, pp. 503–6.

  15. S. Ikonopisov, A. Girginov, and M. Machkova: Electrochim. Acta., 1977, vol. 22, pp. 1283–6.

    Article  CAS  Google Scholar 

  16. J.M. Albella, I. Montero, and J.M. Martinez-Duart: Electrochim. Acta., 1987, vol. 32, pp. 255–8.

    Article  CAS  Google Scholar 

  17. G. Mortazavi, J.C. Jiang, and E.I. Meletis: Appl. Surf. Sci., 2019, vol. 488, pp. 370–82.

    Article  CAS  Google Scholar 

  18. K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, M. Sandhyarani, A.C. Bose, and V. Muthupandi: Electrochim. Acta., 2015, vol. 105, pp. 468–80.

    Google Scholar 

  19. D. Zhai, K. Feng, and H. Yue: Metall. Mater. Trans. A., 2019, vol. 50, pp. 2507–18.

    Article  CAS  Google Scholar 

  20. M. Stern and A.L. Geary: J. Electrochem. Soc., 1957, vol. 104, pp. 56–63.

    Article  CAS  Google Scholar 

  21. J. Jang and S.S. Lee: Actuat. A., 2000, vol. 80, pp. 84–9.

    Article  CAS  Google Scholar 

  22. S.W. Guan, M. Qi, Y.D. Li, and W.Q. Wang: Surf. Coat. Tech., 2020, vol. 395, p. 125948.

    Article  CAS  Google Scholar 

  23. T.W. Clyne and S.C. Troughton: Int. Mater. Rev., 2018, vol. 64, pp. 1–36.

    Google Scholar 

  24. A. Nominé, S.C. Troughton, A.V. Nominé, G. Henrion, and T.W. Clyne: Surf. Coat. Tech., 2015, vol. 269, pp. 125–30.

    Article  Google Scholar 

  25. R.G. Ehl and A.J. Ihde: J. Chem. Educ., 1954, vol. 31, p. 226.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 21, 2021; accepted November 20, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, D., Li, X., Shen, J. et al. Mechanism of Microarc Oxidation Treated Ti6Al4V Alloy in a Magnetic Field. Metall Mater Trans A 53, 1200–1207 (2022). https://doi.org/10.1007/s11661-021-06555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06555-4

Navigation