Skip to main content
Log in

A High-Throughput Method to Define Additive Manufacturing Process Parameters: Application to Haynes 282

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper demonstrates how an analytical and experimental method can be used to rapidly define the additive manufacturing settings for a new alloy where the process parameters were previously unknown. A nickel-based superalloy, Haynes 282, was chosen for the analysis. An experimental matrix of focused processing parameters was predicted with a dimensionless number and 100 samples were printed using the Laser Powder Bed Fusion technique. High-throughput measurements validated the predicted process conditions needed to achieve desired density and hardness. The whole process was completed in 16 hours. The new technique was confirmed with analytical processing maps adopted by the metal additive manufacturing community. With the predicted set of process parameters, a low-throughput analyses of conventional microstructural characterizations and tensile testing were used to test the predictions. The resultant as-fabricated microstructures have refined length scales of both microsegregation and secondary phase distributions. The mechanical properties were comparable within the predicted processing window and exhibited high strength and high ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Zhang, S. Sun, D. Qiu, M.A. Gibson, M.S. Dargusch, M. Brandt, M. Qian, and M. Easton: Adv. Eng. Mater., 2018, vol. 20(5), p. 1700952.

    Article  Google Scholar 

  2. W.E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23(6), pp. 1917–28.

    Article  CAS  Google Scholar 

  3. T.M. Pollock, A.J. Clarke, and S.S. Babu: Metall. Mater. Trans. A., 2020, vol. 51A(12), pp. 6000–19.

    Article  Google Scholar 

  4. S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee, and R.R. Dehoff: Metall. Mater. Trans. A., 2018, vol. 49A(9), pp. 3764–80.

    Article  Google Scholar 

  5. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater Sci., 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  6. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann: Acta Mater., 2016, vol. 117, pp. 371–92.

    Article  CAS  Google Scholar 

  7. D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese, and A. Clare: CIRP Ann., 2017, vol. 66(2), pp. 659–81.

    Article  Google Scholar 

  8. L. Thijs, M.L. Montero Sistiaga, R. Wauthle, Q. Xie, J.-P. Kruth, and J. Van Humbeeck: Acta Mater., 2013, vol. 61(12), pp. 4657–68.

    Article  CAS  Google Scholar 

  9. P. Mercelis and J.P. Kruth: Rapid Prototyp. J., 2006, vol. 12(5), pp. 254–65.

    Article  Google Scholar 

  10. K.M. Bertsch, G. Meric de Bellefon, B. Kuehl, and D.J. Thoma: Acta Mater., 2020, vol. 199, pp. 19–33.

    Article  CAS  Google Scholar 

  11. K. Tomasz, C. Edward, K. Bogumiła, and R. Jacek: in Proc.SPIE, 2012.

  12. J.L. Tan, C. Tang, and C.H. Wong: Metall. Mater. Trans. A., 2018, vol. 49A(8), pp. 3663–73.

    Article  Google Scholar 

  13. S.-K. Rittinghaus and J. Zielinski: Metall. Mater. Trans. A., 2021, vol. 52A(3), pp. 1106–16.

    Article  Google Scholar 

  14. A. Caggiano, J. Zhang, V. Alfieri, F. Caiazzo, R. Gao, and R. Teti: CIRP Ann., 2019, vol. 68(1), pp. 451–4.

    Article  Google Scholar 

  15. A.K. Agrawal, G. Meric de Bellefon, and D. Thoma: Mater. Sci. Eng. A., 2020, vol. 793, p. 139841.

    Article  CAS  Google Scholar 

  16. Yadroitsev, I.: LAP LAMBERT Academic Publishing.

  17. A.I. Saville, S.C. Vogel, A. Creuziger, J.T. Benzing, A.L. Pilchak, P. Nandwana, J. Klemm-Toole, K.D. Clarke, S.L. Semiatin, and A.J. Clarke: Addit. Manuf., 2021, vol. 46, p. 102118.

    CAS  Google Scholar 

  18. S.-H. Sun, K. Hagihara, and T. Nakano: Mater. Des., 2018, vol. 140, pp. 307–16.

    Article  CAS  Google Scholar 

  19. F. Geiger, K. Kunze, and T. Etter: Mater. Sci. Eng. A., 2016, vol. 661, pp. 240–6.

    Article  CAS  Google Scholar 

  20. C.Y. Liu, J.D. Tong, M.G. Jiang, Z.W. Chen, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, and C.S. Lao: Mater. Sci. Eng. A., 2019, vol. 766, p. 138364.

    Article  CAS  Google Scholar 

  21. A. Kudzal, B. McWilliams, C. Hofmeister, F. Kellogg, J. Yu, J. Taggart-Scarff, and J. Liang: Mater. Des., 2017, vol. 133, pp. 205–15.

    Article  CAS  Google Scholar 

  22. X. Zhao, S. Dong, S. Yan, X. Liu, Y. Liu, D. Xia, Y. Lv, P. He, B. Xu, and H. Han: Mater. Sci. Eng. A., 2020, vol. 771, p. 138557.

    Article  CAS  Google Scholar 

  23. B. Rankouhi, D.J. Thoma, and K. Suresh, Manufacturing in the Era of 4th Industrial Revolution, World Scientific, 2020, pp. 9–40.

  24. L. Cheng, X. Liang, J. Bai, Q. Chen, J. Lemon, and A. To: Addit. Manuf., 2019, vol. 27, pp. 290–304.

    Google Scholar 

  25. A. Bandyopadhyay and K.D. Traxel: Addit. Manuf., 2018, vol. 22, pp. 758–74.

    Google Scholar 

  26. K.H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L.S. Sigl: Met. Powder Rep., 2017, vol. 72(5), pp. 331–8.

    Article  Google Scholar 

  27. B. Rankouhi, A.K. Agrawal, F.E. Pfefferkorn, and D.J. Thoma: Manuf. Lett., 2021, vol. 27, pp. 13–7.

    Article  Google Scholar 

  28. N.K. Terrett, M. Gardner, D.W. Gordon, R.J. Kobylecki, and J. Steele: Tetrahedron., 1995, vol. 51(30), pp. 8135–73.

    Article  CAS  Google Scholar 

  29. P.P. Pescarmona, J.C. van der Waal, I.E. Maxwell, and T. Maschmeyer: Catal. Lett., 1999, vol. 63(1), pp. 1–11.

    Article  CAS  Google Scholar 

  30. L.A. Thompson and J.A. Ellman: Chem. Rev., 1996, vol. 96(1), pp. 555–600.

    Article  CAS  Google Scholar 

  31. Y. Zhao, N. Sargent, K. Li, and W. Xiong: Materialia., 2020, vol. 13, p. 100835.

    Article  CAS  Google Scholar 

  32. J.W. Pegues, M.A. Melia, R. Puckett, S.R. Whetten, N. Argibay, and A.B. Kustas: Addit. Manuf., 2021, vol. 37, p. 101598.

    CAS  Google Scholar 

  33. K. Huang, C. Kain, N. Diaz-Vallejo, Y. Sohn, and L. Zhou: J. Manuf. Process., 2021, vol. 66, pp. 494–505.

    Article  Google Scholar 

  34. D. Kong, C. Dong, X. Ni, L. Zhang, C. Man, J. Yao, Y. Ji, Y. Ying, K. Xiao, X. Cheng, and X. Li: J. Alloys Compd., 2019, vol. 785, pp. 826–37.

    Article  CAS  Google Scholar 

  35. M.A. Melia, S.R. Whetten, R. Puckett, M. Jones, M.J. Heiden, N. Argibay, and A.B. Kustas: Appl. Mater. Today., 2020, vol. 19, p. 100560.

    Article  Google Scholar 

  36. M.L. Green, I. Takeuchi, and J.R. Hattrick-Simpers: J. Appl. Phys., 2013, vol. 113(23), p. 231101.

    Article  Google Scholar 

  37. S. Liu, A.P. Stebner, B.B. Kappes, and X. Zhang: Addit. Manuf., 2021, vol. 39, p. 101877.

    CAS  Google Scholar 

  38. D.B. Miracle, M. Li, Z. Zhang, R. Mishra, and K.M. Flores: Annu. Rev. Mater. Res., 2021, vol. 51(1), pp. 131–64.

    Article  CAS  Google Scholar 

  39. K.L. Kruger: Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, A. Di Gianfrancesco, ed., Woodhead Publishing, 2017, pp. 511–545.

  40. L.M. Pike: ASME Turbo Expo 2006: Power for Land, Sea, and Air, 2006.

  41. M.C. Hardy, M. Detrois, E.T. McDevitt, C. Argyrakis, V. Saraf, P.D. Jablonski, J.A. Hawk, R.C. Buckingham, H.S. Kitaguchi, and S. Tin: Metall. Mater. Trans. A., 2020, vol. 51A(6), pp. 2626–50.

    Article  Google Scholar 

  42. K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, and F. Rezai: Mater. Sci. Eng. A., 2018, vol. 735, pp. 182–90.

    Article  CAS  Google Scholar 

  43. A. Deshpande, S. Deb Nath, S. Atre, and K. Hsu: Metals., 2020, vol. 10(5), p. 629.

    Article  CAS  Google Scholar 

  44. M. Balbaa, S. Mekhiel, M. Elbestawi, and J. McIsaac: Mater. Des., 2020, vol. 193, p. 108818.

    Article  CAS  Google Scholar 

  45. R. Otto, V. Brøtan, A.S. Azar, and O. Åsebø: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, Springer International Publishing, Cham, 2019.

  46. J. Boswell, J. Jones, N. Barnard, D. Clark, M. Whittaker, and R. Lancaster: Mater. Des., 2021, vol. 205, p. 109725.

    Article  CAS  Google Scholar 

  47. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato: J. Mater. Process. Technol., 2017, vol. 249, pp. 255–63.

    Article  CAS  Google Scholar 

  48. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods., 2012, vol. 9(7), pp. 671–5.

    Article  CAS  Google Scholar 

  49. B. Kappes, S. Moorthy, D. Drake, H. Geerlings, and A. Stebner, Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, Springer International Publishing, Cham, 2018.

  50. S.W. Hughes: Phys. Educ., 2005, vol. 40(5), pp. 468–74.

    Article  Google Scholar 

  51. International, A., ASTM, 2013.

  52. M. Tang, P.C. Pistorius, and J.L. Beuth: Addit. Manuf., 2017, vol. 14, pp. 39–48.

    CAS  Google Scholar 

  53. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik: J. Mater. Process. Technol., 2014, vol. 214(12), pp. 2915–25.

    Article  Google Scholar 

  54. J. Risse and C. Broeckmann: Lehrstuhl für Lasertechnik, 2019.

  55. J. Zhang, D. Gu, Y. Yang, H. Zhang, H. Chen, D. Dai, and K. Lin: Engineering., 2019, vol. 5(4), pp. 736–45.

    Article  CAS  Google Scholar 

  56. C.D. Boley, S.A. Khairallah, and A.M. Rubenchik: Appl. Opt., 2015, vol. 54(9), pp. 2477–82.

    Article  CAS  Google Scholar 

  57. U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, and J.M. Schoenung: Mater. Des., 2017, vol. 113, pp. 331–40.

    Article  CAS  Google Scholar 

  58. X. Wang, L.N. Carter, B. Pang, M.M. Attallah, and M.H. Loretto: Acta Mater., 2017, vol. 128, pp. 87–95.

    Article  CAS  Google Scholar 

  59. P. Promoppatum, S.-C. Yao, P.C. Pistorius, and A.D. Rollett: Engineering., 2017, vol. 3(5), pp. 685–94.

    Article  CAS  Google Scholar 

  60. J. Xu, H. Gruber, R. Boyd, S. Jiang, R.L. Peng, and J.J. Moverare: Materialia., 2020, vol. 10, p. 100657.

    Article  CAS  Google Scholar 

  61. K. Amato, J. Hernandez, L. Murr, E. Martinez, S. Gaytan, P. Shindo, and S. Collins: J. Mater. Sci. Res., 2012, vol. 1(2), p. 3.

    CAS  Google Scholar 

  62. L.O. Osoba, R.G. Ding, and O.A. Ojo: Mater. Charact., 2012, vol. 65, pp. 93–9.

    Article  CAS  Google Scholar 

  63. G.E. Bean, T.D. McLouth, D.B. Witkin, S.D. Sitzman, P.M. Adams, and R.J. Zaldivar: J. Mater. Eng. Perform., 2019, vol. 28(4), pp. 1942–9.

    Article  CAS  Google Scholar 

  64. Y.T. Tang, C. Panwisawas, J.N. Ghoussoub, Y. Gong, J.W.G. Clark, A.A.N. Németh, D.G. McCartney, and R.C. Reed: Acta Mater., 2021, vol. 202, pp. 417–36.

    Article  CAS  Google Scholar 

  65. B. Zhang, P. Wang, Y. Chew, Y. Wen, M. Zhang, P. Wang, G. Bi, and J. Wei: Mater. Sci. Eng. A., 2020, vol. 794, p. 139941.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from DOE/EERE Advanced Manufacturing Office under award DE-EE0009138 is gratefully acknowledged. Support from the University of Wisconsin-Madison UW2020 program for the EOS M290 is also acknowledged. The electron microscopy was carried out using facilities and instrumentation that are partially supported by the NSF through the Materials Research Science and Engineering Center (DMR-1720415).

Author Contributions

ZI: Methodology, Data curation, Writing—original draft. AKA: Methodology, Writing—review and editing. BR: Methodology, Writing—review and editing. CM: mechanical testing. MHA: Supervision, Mechanical testing. FEP: Supervision, Methodology, Writing—review and editing. DJT: Conceptualization, Methodology, Supervision, Resources, Funding acquisition, Project administration, Writing—original draft, review and editing.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahabul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 27, 2021; accepted October 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, Z., Agrawal, A.K., Rankouhi, B. et al. A High-Throughput Method to Define Additive Manufacturing Process Parameters: Application to Haynes 282. Metall Mater Trans A 53, 250–263 (2022). https://doi.org/10.1007/s11661-021-06517-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06517-w

Navigation