Skip to main content
Log in

Microstructural Analysis of Cadmium Whiskers on Long-Term-Used Hardware

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A survey of cadmium plated field return hardware showed ubiquitous cadmium whisker growth. The most worn and debris-covered hardware showed the densest whisker growth. Whiskers were often found growing in agglomerates of nodules and whiskers. The hardware was rinsed with alcohol to transfer whiskers and debris from the hardware to a flat stub. Fifty whiskers were studied individually by scanning electron microscopy (SEM), including energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD). Most of the whiskers were single crystal, though three were found to contain grain boundaries at kinks. The whiskers ranged from 5 to 600 μm in length and 80 pct showed a <\(\overline{1 }\) 2 \(\overline{1 }\) 0> type growth direction. This growth direction facilitates the development of low energy side faces of the whisker, (0001) and {1010}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.N. Tu: Phys. Rev. B., 1994, vol. 49, p. 1818.

    Article  Google Scholar 

  2. H.L. Cobb: The Mon. Rev. Am. Electroplat. Soc., 1946, vol. 33, p. 28.

    CAS  Google Scholar 

  3. R.G. Treuting and S.M. Arnold: Acta Metall., 1957, vol. 5, p. 598.

    Article  CAS  Google Scholar 

  4. M.O. Peach: J. Appl. Phys., 1952, vol. 23, pp. 1401–3.

    Article  CAS  Google Scholar 

  5. J.H. Kitterman and D.R. Winder: J. Cryst. Growth., 1972, vol. 13(14), pp. 198–201.

    Article  Google Scholar 

  6. S.M. Arnold, In Electron. Compon. Conf., 1959.

  7. W.C. Ellis: Trans. Met. Soc. AIME., 1966, vol. 236, pp. 872–5.

    CAS  Google Scholar 

  8. P.B. Price: Philos. Mag., 1960, vol. 5, pp. 473–84.

    Article  CAS  Google Scholar 

  9. C. Nanev and D. Iwanov: Phys. Status Solidi., 1967, vol. 23, pp. 663–73.

    Article  CAS  Google Scholar 

  10. C.R. Loper, D.H. Rasmussen, and H.A. Koelling: J. Cryst. Growth., 1971, vol. 9, pp. 217–27.

    Article  CAS  Google Scholar 

  11. B.Z. Lee and D.N. Lee: Acta Mater., 1998, vol. 46, pp. 3701–14.

    Article  CAS  Google Scholar 

  12. R. Lahtinen and T.E. Gustafsson, In SUR/FIN, 2006.

  13. G.T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong, and L. Nguyen: J. Appl. Phys., 2002, vol. 92, pp. 64–9.

    Article  CAS  Google Scholar 

  14. W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, Y.Y. Bong, and L. Nguyen: Acta Mater., 2003, vol. 51, pp. 6253–61.

    Article  CAS  Google Scholar 

  15. P.T. Vianco, D.P. Cummings, P.G. Kotula, B.M. McKenzie, L.M. Lowery, S. Williams, and D. Banga: Electron. Mater., 2019, vol. 49, pp. 888–904.

    Article  Google Scholar 

  16. R.M. Fisher, L.S. Darken, and K.G. Carroll: Acta Metall., 1954, vol. 2, pp. 368–73.

    Article  CAS  Google Scholar 

  17. J. Cheng, P.T. Vianco, B. Zhang, and J.C.M. Li: Appl. Phys. Lett., 2011, vol. 98, p. 24.

    Google Scholar 

  18. P. Jagtap, N. Jain, and E. Chason: Scripta Mater., 2020, vol. 182, pp. 43–7.

    Article  CAS  Google Scholar 

  19. M. Sobiech, M. Wohlschlogel, U. Welzel, E.J. Mittemeijer, W. Hugel, A. Seekamp, W. Liu, and G.E. Ice: Appl. Phys. Lett., 2009, vol. 94, p. 221901.

    Article  Google Scholar 

  20. M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hugel, and A. Seekamp: Appl. Phys. Lett., 2008, vol. 93, p. 11906.

    Article  Google Scholar 

  21. J. Smetana: IEEE Trans. Electron. Packag. Manuf., 2007, vol. 30, pp. 11–22.

    Article  CAS  Google Scholar 

  22. P. Jagtap, A. Chakraborty, P. Eisenlor, and P. Kumar: Acta Mater., 2017, vol. 134, pp. 346–59.

    Article  CAS  Google Scholar 

  23. P. Sarobol, J.E. Blendell, and C.A. Handwerker: Acta Mater., 2013, vol. 61, pp. 1991–2003.

    Article  CAS  Google Scholar 

  24. K. Tsuji, In AESF SUR/FIN, 2003.

  25. R.B. Morris and W. Bonfield: Scripta Metall., 1974, vol. 8, pp. 231–6.

    Article  CAS  Google Scholar 

  26. D.F. Susan, J.R. Michael, W.G. Yelton, B. McKenzie, R.P. Grant, J. Pillars and M.A. Rodriguez, LDRD Final Report. Understanding and Predicting Metallic Whisker Growth and its Effects on Reliability. Sandia National Laboratories, Albuquerque, New Mexico, 2012.

  27. A.R. Verma and S.K. Peneva: J. Cryst. Growth., 1968, vol. 3, pp. 700–4.

    Article  Google Scholar 

  28. H.L. Reynolds and R. Hilty, In IPC/JEDEC Lead Free N. Amer. Conf., Boston, MA, 2004.

  29. E.R. Jette and F. Foote: J. Chem. Phys., 1935, vol. 3, pp. 605–16.

    Article  CAS  Google Scholar 

  30. J.R. Michael, B.B. McKenzie, and D.F. Susan: Microsc. Microanal., 2012, vol. 18, pp. 1–9.

    Article  Google Scholar 

  31. B. Kenny and E.A. Patterson: Exp. Mech., 1985, vol. 25, pp. 208–13.

    Article  Google Scholar 

  32. J.B. LeBret and M.G. Norton: J. Mater. Res. Soc., 2002, vol. 18, pp. 585–93.

    Article  Google Scholar 

  33. L.L. Sheir: Corrosion, 2nd ed. Newnes-Butterworths, London, 1976.

    Google Scholar 

  34. G.S. Baker: Acta Metall., 1957, vol. 5, pp. 353–7.

    Article  CAS  Google Scholar 

  35. D. Susan, J. Michael, R.P. Grant, B. McKenzie, and W.G. Yelton: Metall. Mater. Trans. A., 2013, vol. 44, pp. 1485–96.

    Article  CAS  Google Scholar 

  36. J.W. Shin and E. Chason: J. Mater. Res., 2009, vol. 24, pp. 1522–8.

    Article  CAS  Google Scholar 

  37. C.H. Mathewson and A.J. Phillips: Am. Inst. Min. Metall. Eng., 1928, vol. 40, pp. 402–4.

    Google Scholar 

  38. Z.A. Matysina: Mater. Chem. and Phys., 1999, vol. 60, pp. 70–8.

    Article  CAS  Google Scholar 

  39. H.L. Bhat: Introduction to Crystal Growth, Taylor & Francis Group, Boca Raton, FL, 2015.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Joseph Michael for detailed crystallography discussion and review of this manuscript, and Dr. Mark Rodriguez for XRD analyses and other helpful discussion. This work was funded by Sandia National Laboratories Aging and Lifetime program. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel White.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on April 23, 2021; accepted October 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, R., Ghanbari, Z., Susan, D. et al. Microstructural Analysis of Cadmium Whiskers on Long-Term-Used Hardware. Metall Mater Trans A 53, 200–210 (2022). https://doi.org/10.1007/s11661-021-06512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06512-1

Navigation