Skip to main content
Log in

Comparing Five and Lower-Dimensional Grain Boundary Character and Energy Distributions in Copper: Experiment and Molecular Statics Simulation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The misorientation of 515 grain boundaries has been determined using electron backscatter diffraction data from an 18 μm thick copper foil with columnar grain structure and a preferential {110} surface orientation. The energy of the grain boundaries was determined from the dihedral angles in the vicinity of grain boundary thermal grooves. The experimental grain boundary energy vs. misorientation angle shows deep minima for the low-angle grain boundaries and small minima corresponding to the Σ3 and Σ9 grain boundaries. Only a small fraction of the coincidence site lattice grain boundaries demonstrate an increased occurrence frequency (compared to a random orientation distribution) and low energy. In parallel, the grain boundary energy for a subset of 400 symmetrical tilt grain boundaries was calculated using molecular statics simulations. There is a good agreement between the experiment and molecular statics modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Watanabe: J. Mater. Sci., 2011, vol. 46, pp. 4095–115.

    CAS  Google Scholar 

  2. V. Randle: Acta Mater., 1998, vol. 46, pp. 1459–80.

    CAS  Google Scholar 

  3. V. Randle and G. Owen: Acta Mater., 2006, vol. 54, pp. 1777–83.

    CAS  Google Scholar 

  4. G.S. Rohrer: J. Mater. Sci., 2011, vol. 46, pp. 5881–95.

    CAS  Google Scholar 

  5. D. Wolf and S. Phillpot: Mater. Sci. Eng. A., 1989, vol. 107, pp. 3–14.

    Google Scholar 

  6. D.L. Olmsted, S.M. Foiles, and E.A. Holm: Acta Mater., 2009, vol. 57, pp. 3694–703.

    CAS  Google Scholar 

  7. E.A. Holm, D.L. Olmsted, and S.M. Foiles: Scr. Mater., 2010, vol. 63, pp. 905–8.

    CAS  Google Scholar 

  8. V.V. Bulatov, B.W. Reed, and M. Kumar: Acta Mater., 2014, vol. 65, pp. 161–75.

    CAS  Google Scholar 

  9. W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, p. 275.

    CAS  Google Scholar 

  10. O.B.M. Hardouin Duparc: J. Mater. Sci., 2011, vol. 46, pp. 4116–34.

    CAS  Google Scholar 

  11. P.R.M. Van Beers, V.G. Kouznetsova, M.G.D. Geers, M.A. Tschopp, and D.L. McDowell: Acta Mater., 2015, vol. 82, pp. 513–29.

    Google Scholar 

  12. L. Zhang, Y. Gu, and Y. Xiang: Acta Mater., 2017, vol. 126, pp. 11–24.

    CAS  Google Scholar 

  13. J. Hickman and Y. Mishin: Phys. Rev. Mater., 2017, vol. 1, p. 010601.

  14. T. Frolov, D.L. Olmsted, M. Asta, and Y. Mishin: Nat. Commun., 2013, vol. 4, pp. 1897–9.

    Google Scholar 

  15. N.A. Gjostein and F.N. Rhines: Acta Metall., 1959, vol. 7, pp. 319–30.

    CAS  Google Scholar 

  16. Y. Amouyal, E. Rabkin, and Y. Mishin: Acta Mater., 2005, vol. 53, pp. 3795–805.

    CAS  Google Scholar 

  17. Y. Amouyal and E. Rabkin: Acta Mater., 2007, vol. 55, pp. 6681–9.

    CAS  Google Scholar 

  18. S.J. Dillon, M.P. Harmer, and G.S. Rohrer: J. Am. Ceram. Soc., 2010, vol. 93, pp. 1796–802.

    CAS  Google Scholar 

  19. D.W. Hoffman and J.W. Cahn: Surf. Sci., 1972, vol. 31, pp. 368–88.

    CAS  Google Scholar 

  20. J.L. Cahn and D.L. Hoffman: Acta Metall., 1974, vol. 22, pp. 1205–14.

    CAS  Google Scholar 

  21. S. Ratanaphan, D. Raabe, R. Sarochawikasit, D.L. Olmsted, G.S. Rohrer, and K.N. Tu: J. Mater. Sci., 2017, vol. 52, pp. 4070–85.

    CAS  Google Scholar 

  22. M.A. Linne, T.R. Bieler, and S. Daly: Int. J. Plast., 2020, vol. 135, p. 102818.

    CAS  Google Scholar 

  23. S.G. Baird, E.R. Homer, D.T. Fullwood, and O.K. Johnson: Comput. Mater. Sci., 2021, vol. 200, p. 110756.

    CAS  Google Scholar 

  24. G.S. Rohrer, E.A. Holm, A.D. Rollett, S.M. Foiles, J. Li, and D.L. Olmsted: Acta Mater., 2010, vol. 58, pp. 5063–9.

    CAS  Google Scholar 

  25. D.M. Saylor, A. Morawiec, and G.S. Rohrer: Acta Mater., 2003, vol. 51, pp. 3675–86.

    CAS  Google Scholar 

  26. S.J. Dillon and G.S. Rohrer: J. Am. Ceram. Soc., 2009, vol. 92, pp. 1580–5.

    CAS  Google Scholar 

  27. J. Li, S.J. Dillon, and G.S. Rohrer: Acta Mater., 2009, vol. 57, pp. 4304–11.

    CAS  Google Scholar 

  28. H. Beladi and G.S. Rohrer: Acta Mater., 2013, vol. 61, pp. 1404–12.

    CAS  Google Scholar 

  29. H. Beladi, N.T. Nuhfer, and G.S. Rohrer: Acta Mater., 2014, vol. 70, pp. 281–9.

    CAS  Google Scholar 

  30. Y. Shen, X. Zhong, H. Liu, R.M. Suter, A. Morawiec, and G.S. Rohrer: Acta Mater., 2019, vol. 166, pp. 126–34.

    CAS  Google Scholar 

  31. B. Zhao, J.C. Verhasselt, L.S. Shvindlerman, and G. Gottstein: Acta Mater., 2010, vol. 58, pp. 5646–53.

    CAS  Google Scholar 

  32. V.V. Korolev, Y.V. Kucherinenko, A.M. Makarevich, B.B. Straumal, and P.V. Protsenko: Mater. Lett., 2017, https://doi.org/10.1016/j.matlet.2017.03.076.

    Article  Google Scholar 

  33. J.J. Bean and K.P. McKenna: Acta Mater., 2016, vol. 110, pp. 246–57.

    CAS  Google Scholar 

  34. M.W. Finnis and J.E. Sinclair: Philos. Mag. A., 1984, vol. 50, pp. 45–55.

    CAS  Google Scholar 

  35. M.S. Daw and M.I. Baskes: Phys. Rev. Lett., 1983, vol. 50, p. 1285.

    CAS  Google Scholar 

  36. G.J. Ackland, G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis: Philos. Mag. A., 1987, vol. 56, pp. 735–56.

    CAS  Google Scholar 

  37. F. Cleri and V. Rosato: Phys. Rev. B., 1993, vol. 48, p. 22.

    CAS  Google Scholar 

  38. A.P. Sutton and J. Chen: Philos. Mag. Lett., 1990, vol. 61, pp. 139–46.

    Google Scholar 

  39. M.S. Daw, S.M. Foiles, and M.I. Baskes: Mater. Sci. Rep., 1993, vol. 9, pp. 251–10.

    CAS  Google Scholar 

  40. H. Gleiter and B. Chalmers: High-Angle Grain Boundaries, vol. 16, Pergamon Press, Oxford, 1972.

    Google Scholar 

  41. D. Chatain, V. Ghetta, and P. Wynblatt: Interface Sci., 2004, vol. 12, pp. 7–18.

    CAS  Google Scholar 

  42. V.V. Korolev, Y.V. Kucherinenko, and P.V. Protsenko: Metall. Mater. Trans. A., 2019, https://doi.org/10.1007/s11661-018-4990-8.

    Article  Google Scholar 

  43. N. Eustathopoulos, M.G. Nicholas, and B.B. Drevet: Wettability at High Temperatures, vol. 3, 1999.

  44. M. Nakamoto, M. Liukkonen, M. Friman, E. Heikinheimo, M. Hämäläinen, and L. Holappa: Metall. Mater. Trans. B., 2008, vol. 39, pp. 570–80.

    Google Scholar 

  45. J. Zhao and B.L. Adams: Acta Crystallogr. Sect. A., 1988, vol. 44, pp. 326–36.

    Google Scholar 

  46. L.S. Shvindlerman and B.B. Straumal: Acta Metall., 1985, vol. 33, pp. 1735–49.

    CAS  Google Scholar 

  47. B.W. Krakauer and D.N. Seidman: Acta Mater., 1998, vol. 46, pp. 6145–61.

    Google Scholar 

  48. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    CAS  Google Scholar 

  49. K. Miyazawa, Y. Iwasaki, K. Ito, and Y. Ishida: Acta Crystallogr. Sect. A., 1996, vol. A52, pp. 787–96.

    CAS  Google Scholar 

  50. H. Gleiter: Acta Metall., 1970, vol. 18, pp. 23–30.

    CAS  Google Scholar 

  51. B. Straumal, Y. Kucherinenko, and B. Baretzky: Rev. Adv. Mater. Sci., 2004, vol. 7, pp. 23–31.

    CAS  Google Scholar 

  52. A. Morawiec: Acta Mater., 2000, vol. 48, pp. 3525–32.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Scientific Foundation under grant 19-72-10160. We would also like to acknowledge the financial support from the EPSRC (EP/K003151) and the support from the N8 Consortium (Polaris supercomputer) and the Materials Chemistry Consortium (Archer supercomputer, EPSRC grant EP/L000202). We would also like to acknowledge that part of this work was performed using resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service (http://www.csd3.cam.ac.uk/), by Dell EMC and Intel using Tier-2 funding from the EPSRC (capital Grant EP/P020259/1), and by DiRAC with funding from the STFC (www.dirac.ac.uk). Jonathan Bean would like to acknowledge financial support from ERC grant RG80902. We give special thanks to Prof A. Lindsay Greer for the useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel V. Protsenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 19, 2019; accepted October 10, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, V.V., Bean, J.J., Nevolin, Y.M. et al. Comparing Five and Lower-Dimensional Grain Boundary Character and Energy Distributions in Copper: Experiment and Molecular Statics Simulation. Metall Mater Trans A 53, 449–459 (2022). https://doi.org/10.1007/s11661-021-06500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06500-5

Navigation