Abstract
The misorientation of 515 grain boundaries has been determined using electron backscatter diffraction data from an 18 μm thick copper foil with columnar grain structure and a preferential {110} surface orientation. The energy of the grain boundaries was determined from the dihedral angles in the vicinity of grain boundary thermal grooves. The experimental grain boundary energy vs. misorientation angle shows deep minima for the low-angle grain boundaries and small minima corresponding to the Σ3 and Σ9 grain boundaries. Only a small fraction of the coincidence site lattice grain boundaries demonstrate an increased occurrence frequency (compared to a random orientation distribution) and low energy. In parallel, the grain boundary energy for a subset of 400 symmetrical tilt grain boundaries was calculated using molecular statics simulations. There is a good agreement between the experiment and molecular statics modeling.
Similar content being viewed by others
References
T. Watanabe: J. Mater. Sci., 2011, vol. 46, pp. 4095–115.
V. Randle: Acta Mater., 1998, vol. 46, pp. 1459–80.
V. Randle and G. Owen: Acta Mater., 2006, vol. 54, pp. 1777–83.
G.S. Rohrer: J. Mater. Sci., 2011, vol. 46, pp. 5881–95.
D. Wolf and S. Phillpot: Mater. Sci. Eng. A., 1989, vol. 107, pp. 3–14.
D.L. Olmsted, S.M. Foiles, and E.A. Holm: Acta Mater., 2009, vol. 57, pp. 3694–703.
E.A. Holm, D.L. Olmsted, and S.M. Foiles: Scr. Mater., 2010, vol. 63, pp. 905–8.
V.V. Bulatov, B.W. Reed, and M. Kumar: Acta Mater., 2014, vol. 65, pp. 161–75.
W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, p. 275.
O.B.M. Hardouin Duparc: J. Mater. Sci., 2011, vol. 46, pp. 4116–34.
P.R.M. Van Beers, V.G. Kouznetsova, M.G.D. Geers, M.A. Tschopp, and D.L. McDowell: Acta Mater., 2015, vol. 82, pp. 513–29.
L. Zhang, Y. Gu, and Y. Xiang: Acta Mater., 2017, vol. 126, pp. 11–24.
J. Hickman and Y. Mishin: Phys. Rev. Mater., 2017, vol. 1, p. 010601.
T. Frolov, D.L. Olmsted, M. Asta, and Y. Mishin: Nat. Commun., 2013, vol. 4, pp. 1897–9.
N.A. Gjostein and F.N. Rhines: Acta Metall., 1959, vol. 7, pp. 319–30.
Y. Amouyal, E. Rabkin, and Y. Mishin: Acta Mater., 2005, vol. 53, pp. 3795–805.
Y. Amouyal and E. Rabkin: Acta Mater., 2007, vol. 55, pp. 6681–9.
S.J. Dillon, M.P. Harmer, and G.S. Rohrer: J. Am. Ceram. Soc., 2010, vol. 93, pp. 1796–802.
D.W. Hoffman and J.W. Cahn: Surf. Sci., 1972, vol. 31, pp. 368–88.
J.L. Cahn and D.L. Hoffman: Acta Metall., 1974, vol. 22, pp. 1205–14.
S. Ratanaphan, D. Raabe, R. Sarochawikasit, D.L. Olmsted, G.S. Rohrer, and K.N. Tu: J. Mater. Sci., 2017, vol. 52, pp. 4070–85.
M.A. Linne, T.R. Bieler, and S. Daly: Int. J. Plast., 2020, vol. 135, p. 102818.
S.G. Baird, E.R. Homer, D.T. Fullwood, and O.K. Johnson: Comput. Mater. Sci., 2021, vol. 200, p. 110756.
G.S. Rohrer, E.A. Holm, A.D. Rollett, S.M. Foiles, J. Li, and D.L. Olmsted: Acta Mater., 2010, vol. 58, pp. 5063–9.
D.M. Saylor, A. Morawiec, and G.S. Rohrer: Acta Mater., 2003, vol. 51, pp. 3675–86.
S.J. Dillon and G.S. Rohrer: J. Am. Ceram. Soc., 2009, vol. 92, pp. 1580–5.
J. Li, S.J. Dillon, and G.S. Rohrer: Acta Mater., 2009, vol. 57, pp. 4304–11.
H. Beladi and G.S. Rohrer: Acta Mater., 2013, vol. 61, pp. 1404–12.
H. Beladi, N.T. Nuhfer, and G.S. Rohrer: Acta Mater., 2014, vol. 70, pp. 281–9.
Y. Shen, X. Zhong, H. Liu, R.M. Suter, A. Morawiec, and G.S. Rohrer: Acta Mater., 2019, vol. 166, pp. 126–34.
B. Zhao, J.C. Verhasselt, L.S. Shvindlerman, and G. Gottstein: Acta Mater., 2010, vol. 58, pp. 5646–53.
V.V. Korolev, Y.V. Kucherinenko, A.M. Makarevich, B.B. Straumal, and P.V. Protsenko: Mater. Lett., 2017, https://doi.org/10.1016/j.matlet.2017.03.076.
J.J. Bean and K.P. McKenna: Acta Mater., 2016, vol. 110, pp. 246–57.
M.W. Finnis and J.E. Sinclair: Philos. Mag. A., 1984, vol. 50, pp. 45–55.
M.S. Daw and M.I. Baskes: Phys. Rev. Lett., 1983, vol. 50, p. 1285.
G.J. Ackland, G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis: Philos. Mag. A., 1987, vol. 56, pp. 735–56.
F. Cleri and V. Rosato: Phys. Rev. B., 1993, vol. 48, p. 22.
A.P. Sutton and J. Chen: Philos. Mag. Lett., 1990, vol. 61, pp. 139–46.
M.S. Daw, S.M. Foiles, and M.I. Baskes: Mater. Sci. Rep., 1993, vol. 9, pp. 251–10.
H. Gleiter and B. Chalmers: High-Angle Grain Boundaries, vol. 16, Pergamon Press, Oxford, 1972.
D. Chatain, V. Ghetta, and P. Wynblatt: Interface Sci., 2004, vol. 12, pp. 7–18.
V.V. Korolev, Y.V. Kucherinenko, and P.V. Protsenko: Metall. Mater. Trans. A., 2019, https://doi.org/10.1007/s11661-018-4990-8.
N. Eustathopoulos, M.G. Nicholas, and B.B. Drevet: Wettability at High Temperatures, vol. 3, 1999.
M. Nakamoto, M. Liukkonen, M. Friman, E. Heikinheimo, M. Hämäläinen, and L. Holappa: Metall. Mater. Trans. B., 2008, vol. 39, pp. 570–80.
J. Zhao and B.L. Adams: Acta Crystallogr. Sect. A., 1988, vol. 44, pp. 326–36.
L.S. Shvindlerman and B.B. Straumal: Acta Metall., 1985, vol. 33, pp. 1735–49.
B.W. Krakauer and D.N. Seidman: Acta Mater., 1998, vol. 46, pp. 6145–61.
D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.
K. Miyazawa, Y. Iwasaki, K. Ito, and Y. Ishida: Acta Crystallogr. Sect. A., 1996, vol. A52, pp. 787–96.
H. Gleiter: Acta Metall., 1970, vol. 18, pp. 23–30.
B. Straumal, Y. Kucherinenko, and B. Baretzky: Rev. Adv. Mater. Sci., 2004, vol. 7, pp. 23–31.
A. Morawiec: Acta Mater., 2000, vol. 48, pp. 3525–32.
Acknowledgments
This work was supported by the Russian Scientific Foundation under grant 19-72-10160. We would also like to acknowledge the financial support from the EPSRC (EP/K003151) and the support from the N8 Consortium (Polaris supercomputer) and the Materials Chemistry Consortium (Archer supercomputer, EPSRC grant EP/L000202). We would also like to acknowledge that part of this work was performed using resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service (http://www.csd3.cam.ac.uk/), by Dell EMC and Intel using Tier-2 funding from the EPSRC (capital Grant EP/P020259/1), and by DiRAC with funding from the STFC (www.dirac.ac.uk). Jonathan Bean would like to acknowledge financial support from ERC grant RG80902. We give special thanks to Prof A. Lindsay Greer for the useful discussion.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted April 19, 2019; accepted October 10, 2021.
Rights and permissions
About this article
Cite this article
Korolev, V.V., Bean, J.J., Nevolin, Y.M. et al. Comparing Five and Lower-Dimensional Grain Boundary Character and Energy Distributions in Copper: Experiment and Molecular Statics Simulation. Metall Mater Trans A 53, 449–459 (2022). https://doi.org/10.1007/s11661-021-06500-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-021-06500-5