Skip to main content

Advertisement

Log in

Intermetallic Growth at the Interfaces Between Zn4Sb3 Thermoelectric Material and Various Metallic Electrodes

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Zn4Sb3 has received interest for thermoelectric (TE) applications due to its low cost and low environmental impact. In this study, the Zn4Sb3 TE material was diffusion-bonded with multiple electrode materials of Ni, Ag, Cu, Pd and Ti for evaluation of the manufacturing of TE modules. Intermetallic compounds formed at the interfaces of the Zn4Sb3 diffusion couples, with Ni, Ag, Cu, and Pd exhibiting the selective reaction effect with zinc due to its high chemical affinity and low formation energies. Optimized bonding strengths of 6.6 to 8.2 MPa were achieved in Zn4Sb3 bonded with Ni, Ag and Cu materials at 350 °C. The Pd material could only bond at a temperature above 300 °C, and cracks presented after longer bonding times. As for the titanium, Zn4Sb3/Ti was successfully joined only at temperatures between 400 °C and 500 °C. It was observed that a rather thin TiSb2 intermetallic compound formed during the interfacial reactions between Zn4Sb3 and Ti, which grew significantly more slowly than those formed at the interfaces of Zn4Sb3 diffusion-coupled with Ni, Ag, Cu, and Pd metallic materials. Our results provide a reference for evaluating these common materials as suitable electrode and barrier layer candidates for utilizing the Zn4Sb3 TE material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Zhang, H.Y. Jing, Y.D. Han, L.Y. Xu, and G.Q. Lu: J. Alloys Compd., 2013, vol. 576, pp. 424–31.

    Article  CAS  Google Scholar 

  2. K.Y. Lee and T.S. Oh: Mater. Sci. Forum., 2007, vol. 534–536, pp. 1493–6.

    Article  Google Scholar 

  3. D.B. Xiong, N.L. Okamoto, and H. Inui: Scr. Mater., 2013, vol. 69, pp. 397–400.

    Article  CAS  Google Scholar 

  4. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen: Nat. Mater., 2004, vol. 3, pp. 458–63.

    Article  CAS  Google Scholar 

  5. P.Y. Lee and P.H. Lin: Energies., 2018, vol. 11, pp. 1–12.

    Google Scholar 

  6. T. Zou, W. Xie, J. Feng, X. Qin, and A. Weidenkaff: J. Nanomater., 2015, vol. 15, p. 642909.

    Google Scholar 

  7. S. Wang, H. Li, D. Qi, W. Xie, and X. Tang: Acta Mater., 2011, vol. 59, pp. 4805–17.

    Article  CAS  Google Scholar 

  8. M.S. Song, S.M. Choi, W.S. Seo, J. Moon, and K.W. Jang: J. Korean Phys. Soc., 2012, vol. 60, pp. 1735–40.

    Article  CAS  Google Scholar 

  9. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat: Int. Mater. Rev., 2003, vol. 48, pp. 45–66.

    Article  CAS  Google Scholar 

  10. T.M. Ritzer, P.G. Lau, and A.D. Bogard: in International Conference on Thermoelectrics, ICT, Proceedings, 1997, pp. 619–23.

  11. M. Way, D. Luo, R. Tuley, and R. Goodall: J. Alloys Compd., 2021, vol. 858, p. 157750.

    Article  CAS  Google Scholar 

  12. R. Zybala, K. Wojciechowski, M. Schmidt, and R. Mania: in 11th International Conference and Exhibition of the European Ceramic Society 2009, vol. 1, 2009, pp. 341–34.

  13. H. Xia, F. Drymiotis, C.L. Chen, A. Wu, and G.J. Snyder: J. Mater. Sci., 2014, vol. 49, pp. 1716–23.

    Article  CAS  Google Scholar 

  14. K. Placha, R.S. Tuley, M. Salvo, V. Casalegno, and K. Simpson: Materials (Basel)., 2018, vol. 11, p. 2483.

    Article  CAS  Google Scholar 

  15. M. Weinstein and A.I. Mlavsky: Rev. Sci. Instrum., 1962, vol. 33, pp. 1119–20.

    Article  Google Scholar 

  16. H. Xia, C.L. Chen, F. Drymiotis, A. Wu, Y.Y. Chen, and G.J. Snyder: J. Electron. Mater., 2014, vol. 43, pp. 4064–9.

    Article  CAS  Google Scholar 

  17. J. Fan, L. Chen, S. Bai, and X. Shi: Mater. Lett., 2004, vol. 58, pp. 3876–8.

    Article  CAS  Google Scholar 

  18. D. Zhao, X. Li, L. He, W. Jiang, and L. Chen: J. Alloys Compd., 2009, vol. 477, pp. 425–31.

    Article  CAS  Google Scholar 

  19. D. Zhao, H. Geng, and X. Teng: J. Alloys Compd., 2012, vol. 517, pp. 198–203.

    Article  CAS  Google Scholar 

  20. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods., 2012, vol. 9, pp. 671–5.

    Article  CAS  Google Scholar 

  21. G.P. Vassilev, T. Gomez-Acebo, and J.C. Tedenac: J. Phase Equilibria., 2000, vol. 21, pp. 287–301.

    Article  CAS  Google Scholar 

  22. P. Nash and Y.Y. Pan: J. Phase Equilib., 1987, vol. 8, pp. 422–30.

    Article  CAS  Google Scholar 

  23. X. Su, N.Y. Tang, and J.M. Toguri: J. Phase Equilib., 2002, vol. 23, pp. 140–8.

    Article  CAS  Google Scholar 

  24. F.A. Fasoyinu and F. Weinberg: Metall. Trans. B., 1990, vol. 21B, pp. 549–58.

    Article  CAS  Google Scholar 

  25. Y. Zhao, Z. Zhu, F. Yin, Z. Long, and Y. Wu: J. Phase Equilibria Diffus., 2014, vol. 35, pp. 186–94.

    Article  Google Scholar 

  26. C.H. Wang, H.H. Chen, and C.W. Chiu: J. Electron. Mater., 2014, vol. 43, pp. 1362–9.

    Article  CAS  Google Scholar 

  27. C.H. Wang, H.H. Chen, P.Y. Li, and P.Y. Chu: Intermetallics., 2012, vol. 22, pp. 166–75.

    Article  CAS  Google Scholar 

  28. C.H. Wang and P.Y. Li: Mater. Chem. Phys., 2013, vol. 138, pp. 937–43.

    Article  CAS  Google Scholar 

  29. T. Gómez-Acebo: Calphad Comput. Coupling Phase Diagrams Thermochem., 1998, vol. 22, pp. 203–20.

    Article  Google Scholar 

  30. J.R. Friedman, J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir: Intermetallics., 2004, vol. 12, pp. 589–97.

    Article  CAS  Google Scholar 

  31. C.F. Yang, S.W. Chen, K.H. Wu, and T.S. Chin: J. Electron. Mater., 2007, vol. 36, pp. 1524–30.

    Article  CAS  Google Scholar 

  32. J.M. Song and K.L. Lin: J. Mater. Res., 2004, vol. 19, pp. 2719–24.

    Article  CAS  Google Scholar 

  33. I.G. Edmunds and M.M. Qurashi: Acta Crystallogr., 1951, vol. 4, pp. 417–25.

    Article  CAS  Google Scholar 

  34. W. Gierlotka and S.-W. Chen: J. Mater. Res., 2008, vol. 23, pp. 258–63.

    Article  CAS  Google Scholar 

  35. M. Date, K.N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato: J. Mater. Res., 2004, vol. 19, pp. 2887–96.

    Article  CAS  Google Scholar 

  36. Y.C. Chan, M.Y. Chiu, and T.H. Chuang: Zeitschrift fuer Met. Res. Adv. Tech., 2002, vol. 93, pp. 95–8.

    CAS  Google Scholar 

  37. K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda: J. Mater. Res., 2000, vol. 15, pp. 884–91.

    Article  CAS  Google Scholar 

  38. R. Mayappan, R.A. Zaman, Z.Z. Abidin, A.F. Alias, and M.N. Derman: Adv. Mater. Res., 2011, vol. 173, pp. 90–5.

    Article  CAS  Google Scholar 

  39. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura: J. Mater. Res., 1998, vol. 13, pp. 2859–65.

    Article  CAS  Google Scholar 

  40. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: APL Mater., 2013, vol. 1, p. 011002.

    Article  Google Scholar 

  41. D.R. Frear and F.G. Yost: MRS Bull., 1993, vol. 18, pp. 49–54.

    Article  CAS  Google Scholar 

  42. Y. Çiftci: Can. J. Phys., 2016, vol. 94, pp. 328–33.

    Article  Google Scholar 

  43. G. Gosh: J. Mater. Res., 2004, vol. 19, pp. 1439–54.

    Article  Google Scholar 

  44. C.W. Chang and K.L. Lin: J. Mater. Sci. Mater. Electron., 2019, vol. 30, pp. 13090–8.

    Article  CAS  Google Scholar 

  45. I. Kawakatsu and S. Kitayama: Trans. Jpn. Inst. Metal., 1977, vol. 18, pp. 455–65.

    Article  CAS  Google Scholar 

  46. H. Mehrer: Mater. Trans. JIM., 1996, vol. 37, pp. 1259–80.

    Article  CAS  Google Scholar 

  47. J. Philibert: Defect Diffus. Forum., 1993, vol. 95–98, pp. 493–506.

    Article  Google Scholar 

  48. S.W. Yoon, W.K. Choi, and H.M. Lee: Scr. Mater., 1999, vol. 40, pp. 327–32.

    Article  CAS  Google Scholar 

  49. T. Gancarz, P. Bobrowski, S. Pawlak, N. Schell, R. Chulist, and K. Janik: J. Electron. Mater., 2018, vol. 47, pp. 49–60.

    Article  CAS  Google Scholar 

  50. A. Hoxha, H. Oettel, and D. Heger: AIP Conf. Proc., 2010, vol. 1203, pp. 591–5.

    Article  Google Scholar 

  51. R. Mayappan and Z.A. Ahmad: Intermetallics., 2010, vol. 18, pp. 730–5.

    Article  CAS  Google Scholar 

  52. P.-C. Liu: National Cheng Kung University, 2004.

  53. M.L. Williams: Occup. Environ. Med., 1996, vol. 53, pp. 504–504.

    Article  Google Scholar 

  54. M. Galván-Arellano, J. Díaz-Reyes, and R. Peña-Sierra: Vacuum., 2010, vol. 84, pp. 1195–8.

    Article  Google Scholar 

  55. D. Tsunami, K. Nishizawa, T. Oka, T. Shiga, T. Oku, and M. Takemi: in 2013 International Conference on Compound Semiconductor Manufacturing Technology, CS MANTECH 2013, 2013, pp. 233–36.

  56. J.K. Lim, J.S. Russo, and E. Antonier: Plat. Surf. Finish., 1996, vol. 83, pp. 64–7.

    CAS  Google Scholar 

  57. S.S. Ha, J. Park, and S.B. Jung: Mater. Trans., 2011, vol. 52, pp. 1553–9.

    Article  CAS  Google Scholar 

  58. S. Bhagat, H. Han, and T.L. Alford: Thin Solid Films., 2006, vol. 515, pp. 1998–2002.

    Article  CAS  Google Scholar 

  59. F. Braud, J. Torres, J. Palleau, J.L. Mermet, and M.J. Mouche: Appl. Surf. Sci., 1995, vol. 91, pp. 251–6.

    Article  CAS  Google Scholar 

  60. A.T. Dinsdale, A. Watson, A. Kroupa, J. Vřešťál, A. Emanová, and J. Vízdal: Atlas of Phase Diagrams for Lead-Free Soldering, COST Office, 2008.

  61. J. Chen: National Sun Yat-sen University, 2013.

  62. T.H. Chuang, S.W. Hsu, and C.H. Chen: IEEE Trans. Components Packag. Manuf. Technol., 2020, vol. 10, pp. 1657–65.

    Article  CAS  Google Scholar 

  63. A. Tavassoli, A. Grytsiv, F. Failamani, G. Rogl, S. Puchegger, H. Müller, P. Broz, F. Zelenka, D. Macciò, A. Saccone, G. Giester, E. Bauer, M. Zehetbauer, and P. Rogl: Intermetallics., 2018, vol. 94, pp. 119–32.

    Article  CAS  Google Scholar 

  64. M. Armbruster, W. Schnelle, U. Schwarz, and Y. Grin: Inorg. Chem., 2007, vol. 46, pp. 6319–28.

    Article  Google Scholar 

  65. C.-H. Chen, W.-T. Yeh, and T.-H. Chuang: J. Alloys Compd., 2021, vol. 881, p. 160630.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this study by the Ministry of Science and Technology, Taiwan, under Grant No. MOST-109-2221-E-002-118.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Han Chuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 17, 2021, accepted October 10, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CH., Lee, PI., Yeh, WT. et al. Intermetallic Growth at the Interfaces Between Zn4Sb3 Thermoelectric Material and Various Metallic Electrodes. Metall Mater Trans A 53, 136–146 (2022). https://doi.org/10.1007/s11661-021-06499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06499-9

Navigation