Skip to main content
Log in

Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing ε-martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe45Mn35Co10Cr10 alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced ε-martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

reproduced from Ref. [43] with permission of the author (Figure 1(c) is reproduced with permission from Plastic strain-induced sequential martensitic transformation by S.L. Wei et. al. published in Scripta Materialia, vol.185 (2020), Ref. [43].). (d) Experimental TDS curve for a sample H charged for 106 hours, along with deconvoluted peaks (dashed lines) corresponding H release at increasing energies: (1) diffusible hydrogen, (2) thermal ε-γ transformation, (3) Σ3 twin boundaries

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Dwivedi and M. Vishwakarma: Int. J. Hydrogen Energy., 2019, vol. 44, pp. 28007–30.

    Article  CAS  Google Scholar 

  2. S. Lynch: Corros. Rev., 2012, vol. 30, pp. 105–23.

    CAS  Google Scholar 

  3. M. Nagumo: Fundamentals of Hydrogen Embrittlement, Springer Singapore, Singapore, 2016.

  4. R.M. McMEEKING and A.G. EVANS: J. Am. Ceram. Soc. https://doi.org/10.1111/j.1151-2916.1982.tb10426.x.

  5. S.K. Hann and J.D. Gates: J. Mater. Sci. https://doi.org/10.1023/A:1018544204267.

  6. S.D. Antolovich and B. Singh: Metall. Mater. Trans. B., 1971, vol. 2, pp. 2135–41.

    Article  CAS  Google Scholar 

  7. J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 4085–92.

    Article  CAS  Google Scholar 

  8. S.D. Pu, A. Turk, S. Lenka, and S.W. Ooi: Mater. Sci. Eng. A., 2019, vol. 754, pp. 628–35.

    Article  CAS  Google Scholar 

  9. M. Koyama, D. Yamasaki, T. Nagashima, C.C. Tasan, and K. Tsuzaki: Scr. Mater., 2017, vol. 129, pp. 48–51.

    Article  CAS  Google Scholar 

  10. A. Laureys, T. Depover, R. Petrov, and K. Verbeken: in International Journal of Hydrogen Energy, 2015.

  11. Y.D. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. Res., 2002, pp. 27–35.

  12. K.G. Solheim, J.K. Solberg, J. Walmsley, F. Rosenqvist, and T.H. Bjørnå: Eng. Fail. Anal., 2013, vol. 34, pp. 140–9.

    Article  CAS  Google Scholar 

  13. B.C. Cameron, M. Koyama, and C.C. Tasan: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, vol. 50, pp. 29–34.

  14. A. Inoue, Y. Hosoya, and T. Masumoto: Trans Iron Steel Inst Jpn., 1979, vol. 19, pp. 170–8.

    Article  CAS  Google Scholar 

  15. M. Koyama, C.C. Tasan, and K. Tsuzaki: Eng. Fract. Mech., 2019, vol. 214, pp. 123–33.

    Article  Google Scholar 

  16. M. Koyama, C.C. Tasan, T. Nagashima, E. Akiyama, D. Raabe, and K. Tsuzaki: Philos. Mag. Lett., 2016, vol. 96, pp. 9–18.

    Article  CAS  Google Scholar 

  17. M. Koyama, T. Eguchi, K. Ichii, C.C. Tasan, and K. Tsuzaki: Procedia Struct. Integr., 2018, vol. 13, pp. 292–7.

    Article  Google Scholar 

  18. G.S. Mogilny, S.M. Teus, V.N. Shyvanyuk, and V.G. Gavriljuk: Mater. Sci. Eng. A., 2015, vol. 648, pp. 260–4.

    Article  CAS  Google Scholar 

  19. C. Pan, W.Y. Chu, Z.B. Li, D.T. Liang, Y.J. Su, K.W. Gao, and L.J. Qiao: Mater. Sci. Eng. A., 2003, vol. 351, pp. 293–8.

    Article  Google Scholar 

  20. Q. Yang, L.J. Qiao, S. Chiovelli, and J.L. Luo: Scr. Mater., 1999, vol. 40, pp. 1209–14.

    Article  CAS  Google Scholar 

  21. N. Narita, C.J. Altstetter, and H.K. Birnbaum: Metall. Trans. A Phys. Metall. Mater. Sci., 1982, vol. 13 A, pp. 1355–65.

  22. S. Tähtinen, P. Nenonen, and H. Hänninen: Chemistry and Physics of Fracture, Springer, Netherlands, 1987, pp. 568–73.

    Book  Google Scholar 

  23. M.L. Holzworth and M.R. Louthan: Corrosion., 1968, vol. 24, pp. 110–24.

    Article  CAS  Google Scholar 

  24. A. Röhsler, O. Sobol, G. Nolze, W.E.S. Unger, and T. Böllinghaus: J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., 2018, vol. 36, p. 03F103.

  25. A. Głowacka, M.J. Woźniak, G. Nolze, and W.A. Świątnicki: in Solid State Phenomena, vol. 112, 2006, pp. 133–40.

  26. J.M. Rigsbee: Metallography., 1978, vol. 11, pp. 493–8.

    Article  CAS  Google Scholar 

  27. S.M. Teus, V.N. Shyvanyuk, and V.G. Gavriljuk: Mater. Sci. Eng. A., 2008, vol. 497, pp. 290–4.

    Article  Google Scholar 

  28. S. Tähtinen, P. Nenonen, and H. Hänninen: Scr. Metall., 1986, vol. 20, pp. 153–7.

    Article  Google Scholar 

  29. V.N. Shivanyuk, J. Foct, and V.G. Gavriljuk: Scr. Mater., 2003, vol. 49, pp. 601–6.

    Article  CAS  Google Scholar 

  30. S. Pu: MPhil Thesis, University of Cambridge, 2018.

  31. M. Koyama, N. Terao, and K. Tsuzaki: Mater. Lett., 2019, vol. 249, pp. 197–200.

    Article  CAS  Google Scholar 

  32. J.A. Venables: Philos. Mag., 1962, vol. 7, pp. 35–44.

    Article  Google Scholar 

  33. Q. Yang and J.L. Luo: Mater. Sci. Eng. A., 2000, vol. 288, pp. 75–83.

    Article  Google Scholar 

  34. L. Claeys, T. Depover, I. DeGraeve, and K. Verbeken: Corrosion, 2018, p. 2959.

  35. M. Tanino, H. Komatsu, and S. Funaki: in Journal de Physique (Paris), Colloque, vol. 43, EDP Sciences, 1982, pp. C4-503-C4-508.

  36. A. Röhsler, O. Sobol, W.E.S. Unger, and T. Böllinghaus: Int. J. Hydrogen Energy., 2019, vol. 44, pp. 12228–38.

    Article  Google Scholar 

  37. R.P. Frohmberg, W.J. Barnett, and A.R. Troiano: ASM Trans., 1955, vol. 47, pp. 892–925.

    Google Scholar 

  38. M.B. WHITEMAN and A.R. Troiano: Phys. Status solidi.

  39. A.E. Pontini and J.D. Hermida: Scr. Mater., 1997, vol. 37, pp. 1831–7.

    Article  CAS  Google Scholar 

  40. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Mater. Sci. Forum., 1996, vol. 207–209, pp. 93–6.

    Article  Google Scholar 

  41. J.D. Hermida and A. Roviglione: Scr. Mater., 1998, vol. 39, pp. 1145–9.

    Article  CAS  Google Scholar 

  42. M. Koyama, K. Hirata, Y. Abe, A. Mitsuda, S. Iikubo, and K. Tsuzaki: Sci. Rep., 2018, vol. 8, pp. 1–8.

    Google Scholar 

  43. S. Wei, J. Kim, J.L. Cann, R. Gholizadeh, N. Tsuji, and C.C. Tasan: Scr. Mater., 2020, vol. 185, pp. 36–41.

    Article  CAS  Google Scholar 

  44. S. Wei, M. Jiang, and C.C. Tasan: Metall. Mater. Trans. A., 2019, vol. 50, pp. 3985–91.

    Article  CAS  Google Scholar 

  45. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Nature., 2016, vol. 534, pp. 227–30.

    Article  CAS  Google Scholar 

  46. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe: Acta Mater., 2015, vol. 94, pp. 124–33.

    Article  CAS  Google Scholar 

  47. H. Yan, J. Kim, and C.C. Tasan: Acta Mater. 2021, submitted.

  48. M. Koyama, A. Bashir, M. Rohwerder, S.V. Merzlikin, E. Akiyama, K. Tsuzaki, and D. Raabe: J. Electrochem. Soc., 2015, vol. 162, pp. C638–47.

    Article  CAS  Google Scholar 

  49. M. Koyama and K. Tsuzaki: ISIJ Int., 2015, vol. 55, pp. 2269–71.

    Article  CAS  Google Scholar 

  50. S. Takagi, K. Kamijo, T. Usuda, H. Kawachi, and K. Hanaki: 18th IMEKO World Congr. 2006 Metrol. a Sustain. Dev., 2006, vol. 1, pp. 813–7.

  51. Z. Hua, B. An, T. Iijima, C. Gu, and J. Zheng: Scr. Mater., 2017, vol. 131, pp. 47–50.

    Article  CAS  Google Scholar 

  52. J. Li, A. Oudriss, A. Metsue, J. Bouhattate, and X. Feaugas: Sci. Rep., 2017, vol. 7, pp. 1–9.

    Article  Google Scholar 

  53. J. Song and W.A. Curtin: Acta Mater., 2014, vol. 68, pp. 61–9.

    Article  CAS  Google Scholar 

  54. R. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

  55. S. Kajiwara: Metall. Mater. Trans. A., 1986, vol. 17, pp. 1693–702.

    Article  Google Scholar 

  56. Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, and R. Drautz: Phys. Rev. B, 2011, vol. 84, pp. 1–13.

  57. A. Tehranchi and W.A. Curtin: J. Mech. Phys. Solids., 2017, vol. 101, pp. 150–65.

    Article  CAS  Google Scholar 

  58. G.B. Olson and M. Cohen: Metall. Trans. A., 1976, vol. 7, pp. 1905–14.

    Google Scholar 

  59. J.B. Cohen and J. Weertman: Acta Metall., 1963, vol. 11, pp. 996–8.

    Article  CAS  Google Scholar 

  60. Y.F. Guo, S. Xu, X.Z. Tang, Y.S. Wang, and S. Yip: J. Appl. Phys. https://doi.org/10.1063/1.4881756.

  61. J.T. Czernuszka, N.J. Long, E.D. Boyes, and P.B. Hirsch: Philos. Mag. Lett. https://doi.org/10.1080/09500839008215127.

  62. D. Ilin: Université de Bordeaux, 2014.

  63. K. Hirata, S. Iikubo, M. Koyama, K. Tsuzaki, and H. Ohtani: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, vol. 49, pp. 5015–22.

  64. A.F. Bower: Applied Mechanics of Solids , Taylor & Francis, 2012.

  65. M. Koyama, S.M. Taheri-Mousavi, H. Yan, J. Kim, B.C. Cameron, S.S. Moeini-Ardakani, J. Li, and C.C. Tasan: Sci. Adv., 2020, vol. 6, p. eaaz1187.

  66. W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994–7.

    Article  CAS  Google Scholar 

  67. Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2013, vol. 53, pp. 1224–30.

    Article  CAS  Google Scholar 

  68. Z. Xie, Y. Wang, C. Lu, and L. Dai: Mater. Today Commun., 2021, vol. 26, p. 101902.

  69. G.B. Olson and M. Cohen: Metall. Trans. A., 1976, vol. 7, pp. 1897–904.

    Google Scholar 

  70. I.M. Robertson: Eng. Fract. Mech., 1999, vol. 64, pp. 649–73.

    Article  Google Scholar 

  71. G. Xu, C. Wang, J.I. Beltrán, J. Llorca, and Y. Cui: Comput. Mater. Sci., 2016, vol. 118, pp. 103–11.

    Article  Google Scholar 

  72. S. Dash and N. Brown: Acta Metall., 1966, vol. 14, pp. 595–603.

    Article  CAS  Google Scholar 

  73. M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, and K. Tsuzaki: Int. J. Hydrogen Energy., 2017, vol. 42, pp. 12706–23.

    Article  CAS  Google Scholar 

  74. M. Ueda, H.Y. Yasuda, and Y. Umakoshi: Acta Mater., 2003, vol. 51, pp. 1007–17.

    Article  CAS  Google Scholar 

  75. T. Song and B.C. De Cooman: ISIJ Int., 2014, vol. 54, pp. 2394–403.

    Article  CAS  Google Scholar 

  76. X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: https://doi.org/10.1016/j.ijhydene.2014.06.079.

  77. J. Takahashi, K. Kawakami, Y. Kobayashi, and T. Tarui: Scr. Mater., 2010, vol. 63, pp. 261–4.

    Article  CAS  Google Scholar 

  78. Y.S. Chen, P.A.J. Bagot, M.P. Moody, and D. Haley: Int. J. Hydrogen Energy., 2019, vol. 44, pp. 32280–91.

    Article  CAS  Google Scholar 

  79. J. Takahashi, K. Kawakami, and T. Tarui: Scr. Mater., 2012, vol. 67, pp. 213–6.

    Article  CAS  Google Scholar 

  80. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 173–9.

    Article  CAS  Google Scholar 

  81. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  82. I.J. Beyerlein, X. Zhang, and A. Misra: Annu. Rev. Mater. Res., 2014, vol. 44, pp. 329–63.

    Article  CAS  Google Scholar 

  83. A. Serra and D.J. Bacon: Philos. Mag. A, 1996, vol. 73, pp. 333–43.

  84. S. Jiang, Z. Jiang, and Q. Chen: Sci. Rep., 2019, vol. 9, pp. 1–5.

    Article  Google Scholar 

  85. M.H. Yoo and J.K. Lee: Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., 1991, vol. 63, pp. 987–1000.

  86. J. Kim, E. Plancher, and C.C. Tasan: Acta Mater., 2020, vol. 188, pp. 686–96.

    Article  CAS  Google Scholar 

  87. H. Pfeiffer and H. Peisl: Phys. Lett. A., 1977, vol. 60, pp. 363–4.

    Article  Google Scholar 

  88. M.E. Armacanqui and R.A. Oriani: Mater. Sci. Eng., 1987, vol. 92, pp. 127–32.

    Article  CAS  Google Scholar 

  89. M. Gong, J.P. Hirth, Y. Liu, Y. Shen, and J. Wang: Mater. Res. Lett., 2017, vol. 5, pp. 449–64.

    Article  CAS  Google Scholar 

  90. B. Li and E. Ma: Acta Mater., 2009, vol. 57, pp. 1734–43.

    Article  CAS  Google Scholar 

  91. E.G. Astafurova, G.G. Zakharova, and H.J. Maier: Scr. Mater., 2010, vol. 63, pp. 1189–92.

    Article  CAS  Google Scholar 

  92. I. V. Kireeva, Y.I. Chumlyakov, A. V. Tverskov, and H. Maier: Tech. Phys. Lett. https://doi.org/10.1134/S1063785011060071.

  93. C. Hwang and I.M. Bernstein: Scr. Metall., 1982, vol. 16, pp. 85–90.

    Article  CAS  Google Scholar 

  94. K. Lublinska, A. Szummer, and K.J. Kurzydlowski: in NATO Science for Peace and Security Series C: Environmental Security, vol. PartF2, Springer Verlag, 2008, pp. 757–64.

  95. K. Lublinska, A. Szummer, and K.J. Kurzydlowski: Int. J. Nucl. Hydrog. Prod. Appl., 2008, vol. 1, p. 324.

    Google Scholar 

  96. H. Luo, Z. Li, and D. Raabe: Sci. Rep., 2017, vol. 7, p. 9892.

    Article  Google Scholar 

  97. J.M. Rigsbee and R.B. Benson: J. Mater. Sci., 1977.

  98. J. Yamabe, T. Matsumoto, S. Matsuoka, and Y. Murakami: Int. J. Fract., 2012, vol. 177, pp. 141–62.

    Article  CAS  Google Scholar 

  99. R. Kirchheim and A. Pundt: in Physical Metallurgy: Fifth Edition, vol. 1, Elsevier Inc., 2014, pp. 2597–2705.

  100. D. Ikuta, E. Ohtani, A. Sano-Furukawa, Y. Shibazaki, H. Terasaki, L. Yuan, and T. Hattori. https://doi.org/10.1038/s41598-019-43601-z.

Download references

Acknowledgments

The authors acknowledge the financial support by the U.S. Department of Energy’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy under award number DE-EE0008830, and the Department of the Navy, Office of Naval Research under ONR award number N00014-18-1-2284. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research. The authors would like to thank Shaolou Wei and Gaoming Zhu for their contributions.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Tasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 23, 2021, accepted October 10, 2021.

Appendix

Appendix

See Figures A1, A2 and A3.

Fig. A1
figure 11

Grain boundary map of the sample before H charging, corresponding to the H charged sample in Fig. 5. Grain boundaries were mapped by EBSD. Σ3 boundaries are highlighted in blue, and high-angle GBs in cyan. Other CSL boundaries were non-existent except for the single Σ5 boundary shown in purple, which did not correspond to any martensite formation. Points colored black are not indexed due to low image quality in these regions

Fig. A2
figure 12

EBSD phase maps of a single sample (a) after 15 pct pre-strain, and (b) after 55 hours of H charging. (c) and (d) are EBSD twin parent-daughter maps of the same sample region after 55 hours of H charging, where (d) is an enlarged region from (c). Black pixels represent points of the EBSD scan with a confidence index lower than 0.02

Fig. A3
figure 13

EBSD inverse pole figure maps of a single sample, (a) before H charging, (b) after 55 hours H charging, and (c) after H desorption at room temperature for 180 days. (d) Orientation change after desorption measured at the 10 locations labeled in (a), which are points where twinning occurred in (b), i.e. 10 twin instances. Red data points in the graph mark orientation changes comparing (c) to (a), i.e., the change in orientation from the original material state to the desorbed state. Blue data points mark the orientation difference between (c) and (b), i.e., the orientation change from just after H is added to the material to the desorbed state

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronchi, M.R., Yan, H. & Tasan, C.C. Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10. Metall Mater Trans A 53, 432–448 (2022). https://doi.org/10.1007/s11661-021-06498-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06498-w

Navigation