Skip to main content
Log in

On the Inability of the Moving Interface Model to Predict Isothermal Solidification Time During Transient Liquid Phase (TLP) Bonding of Ni-Based Superalloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Understanding diffusion-induced isothermal solidification time during transient liquid phase bonding is vital in producing intermetallic-free robust joints. The isothermal solidification completion time is overestimated by the existing analytical models, even by the closest one to the real bonding conditions, known as the moving interface model. It was found that the boride formation in the diffusion affected zone of Ni-based superalloy upon using B-containing filler metals is one of the reasons behind the inability of the moving interface model to predict the isothermal solidification completion time accurately, which has received scant attention in the literature. Moreover, simplified assumptions in deriving the moving interface model such as constant interfacial solute concentration, which is only valid for binary systems, along with the independency of diffusion coefficient to concentration introduce errors when estimating the isothermal solidification time using the moving interface model. The significant discrepancy between the predicted and experimentally obtained isothermal solidification times reinforces the idea that the existing moving interface analytical model needs to be modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.

    Article  CAS  Google Scholar 

  2. D.S. Duvall, W.A. Owczarski, and D.F. Paulonis: Weld. J. (NY)., 1974, vol. 53, pp. 203–14.

    CAS  Google Scholar 

  3. A. Ghasemi and M. Pouranvari: Mater. Design., 2019, vol. 182, p. 108008.

    Article  CAS  Google Scholar 

  4. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Compd., 2008, vol. 461, pp. 641–7.

    Article  CAS  Google Scholar 

  5. O.A. Idowu, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Eng. A., 2005, vol. 397, pp. 98–112.

    Article  Google Scholar 

  6. W.F. Gale and D.A. Butts: Sci. Technol. Weld. Joining., 2004, vol. 9, pp. 283–300.

    Article  CAS  Google Scholar 

  7. D. F. Paulonis, D. S. Duvall and W. A. Owczarski, (Google Patents: 1972).

  8. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Joining., 2018, vol. 23, pp. 441–8.

    Article  CAS  Google Scholar 

  9. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Joining., 2019, vol. 24, pp. 342–51.

    Article  CAS  Google Scholar 

  10. M. Kapoor, Ö.N. Doğan, C.S. Carney, R.V. Saranam, P. McNeff, and B.K. Paul: Metall. Mater. Trans. A., 2017, vol. 48A, pp. 3343–56.

    Article  Google Scholar 

  11. N.P. Wikstrom, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng. A., 2006, vol. 417, pp. 299–306.

    Article  Google Scholar 

  12. O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi: Metall. Mater. Trans. A., 2006, vol. 37A, pp. 2787–96.

    Article  CAS  Google Scholar 

  13. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Sci. Technol. Weld. Joining., 2014, vol. 19, pp. 105–10.

    Article  CAS  Google Scholar 

  14. O.J. Adebajo and O.A. Ojo: Metall. Mater. Trans. A., 2017, vol. 48A, pp. 26–33.

    Article  Google Scholar 

  15. J.-D. Liu, T. Jin, N.-R. Zhao, Z.-H. Wang, X.-F. Sun, H.-R. Guan, and Z.-Q. Hu: Sci. Technol. Weld. Joining., 2010, vol. 15, pp. 194–8.

    Article  CAS  Google Scholar 

  16. B. Riggs, B. Alexandrov, A. Benatar, and R. Xu: Sci. Technol. Weld. Joining., 2017, vol. 22, pp. 227–35.

    Article  CAS  Google Scholar 

  17. X.B. Hu, N.C. Sheng, Y.M. Zhu, J.F. Nie, J.D. Liu, X.F. Sun, and X.L. Ma: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 1689–98.

    Article  Google Scholar 

  18. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Compd., 2017, vol. 723, pp. 84–91.

    Article  CAS  Google Scholar 

  19. M. Hosseini, A. Ghasemi, and M. Pouranvari: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 5715–24.

    Article  Google Scholar 

  20. M.M. Abdelfatah and O.A. Ojo: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 377–85.

    Article  CAS  Google Scholar 

  21. A. Ghasemi and M. Pouranvari: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 2235–45.

    Article  Google Scholar 

  22. A.G. Bigvand and O.A. Ojo: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1670–4.

    Article  Google Scholar 

  23. S. Hadibeyk, B. Beidokhti, and S.A. Sajjadi: J. Alloy. Compd., 2018, vol. 731, pp. 929–35.

    Article  CAS  Google Scholar 

  24. Y. Zhou, W.F. Gale, and T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–96.

    Article  CAS  Google Scholar 

  25. Y. Nakao, K. Nishimoto, K. Shinozaki, and C. Kang: Trans. Jpn. Welding Soc., 1989, vol. 20, pp. 60–5.

    CAS  Google Scholar 

  26. O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Sci. Technol. Weld. Joining., 2004, vol. 9, pp. 532–40.

    Article  CAS  Google Scholar 

  27. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Can. Metall. Q., 2014, vol. 53, pp. 38–46.

    Article  CAS  Google Scholar 

  28. W.F. Gale and E.R. Wallach: Mater. Sci. Technol., 1991, vol. 7, pp. 1143–8.

    Article  CAS  Google Scholar 

  29. C.W. Sinclair, G.R. Purdy, and J.E. Morral: Metall. Mater. Trans. A., 2000, vol. 31A, pp. 1187–92.

    Article  CAS  Google Scholar 

  30. H. Ikawa, Y. Nakao, and T. Isai: Trans. Jpn. Welding Soc., 1979, vol. 10, pp. 24–9.

    CAS  Google Scholar 

  31. T.C. Illingworth, I.O. Golosnoy, and T.W. Clyne: Mater. Sci. Eng. A., 2007, vol. 445, pp. 493–500.

    Article  Google Scholar 

  32. E.D. Moreau and S.F. Corbin: Metall. Mater. Trans. A., 2020, vol. 18, pp. 1–11.

    Google Scholar 

  33. A. Ghanbar, D.E. Michael, and O.A. Ojo: Philos. Magn., 2019, vol. 99, pp. 2169–84.

    Article  CAS  Google Scholar 

  34. I. Tuah-Poku, M. Dollar, and T.H.B. Massalski: Metall. Trans. A., 1988, vol. 19, pp. 675–86.

    Article  CAS  Google Scholar 

  35. J. Crank: The Mathematics of Diffusion, Oxford University Press, Oxford, 1979.

    Google Scholar 

  36. M.-C. Liu, G.-M. Sheng, H.-J. He, and Y.-J. Jiao: J. Mater. Process. Technol., 2017, vol. 246, pp. 245–51.

    Article  CAS  Google Scholar 

  37. A.T. Egbewande, C. Chukwukaeme, and O.A. Ojo: Mater. Charact., 2008, vol. 59, pp. 1051–8.

    Article  CAS  Google Scholar 

  38. E.D. Moreau and S.F. Corbin: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 5678–88.

    Article  Google Scholar 

  39. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and Bo. Sundman: Calphad., 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  40. A. Schnell, A. Stankowski and E. de Marcos: A study of the diffusion brazing process applied to the single crystal superalloy CMSX-4. (2006).

  41. J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, vol. 213, pp. 20–9.

    Article  CAS  Google Scholar 

  42. T. Tokunaga, K. Nishio, and M. Hasebe: J. Phase Equilib., 2001, vol. 22, pp. 291–9.

    Article  CAS  Google Scholar 

  43. Thermo-Calc Software TCNI /NI-alloys database version 10, ((accessed 06 August 2021)).

  44. W.D. MacDonald and T.W. Eagar: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 315–25.

    Article  CAS  Google Scholar 

  45. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys (Revised Reprint), CRC Press, Boca Raton, 2009.

    Book  Google Scholar 

  46. H. Kokawa, C.H. Lee, and T.H. North: Metall. Trans. A., 1991, vol. 22A, pp. 1627–31.

    Article  CAS  Google Scholar 

  47. W.F. Gale and E.R. Wallach: Metall. Trans. A., 1991, vol. 22A, pp. 2451–7.

    Article  CAS  Google Scholar 

  48. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Sci. Technol. Weld. Joining., 2018, vol. 23, pp. 13–8.

    Article  CAS  Google Scholar 

  49. A. LeBlanc and R. Mevrel, In Conference proceedings: High Temperature Materials for Power Engineering, (Liege Belgium: 1990), pp 1451–60.

  50. B. Zhang, G. Sheng, Y. Jiao, Z. Gao, X. Gong, H. Fan, and J. Zhong: J. Alloy. Compd., 2017, vol. 695, pp. 3202–10.

    Article  CAS  Google Scholar 

  51. S. Steuer and R.F. Singer: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 2226–32.

    Article  Google Scholar 

  52. N. Sheng, J. Liu, T. Jin, X. Sun, and Hu. Zhuangqi: J. Mater. Sci. Technol., 2015, vol. 31, pp. 129–34.

    Article  CAS  Google Scholar 

  53. N. Sheng, J. Liu, T. Jin, X. Sun, and Hu. Zhuangqi: Metall. Mater. Trans. A., 2015, vol. 46, pp. 5772–81.

    Article  CAS  Google Scholar 

  54. S.F. Corbin and C.A. Tadgell: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 1232–47.

    Article  Google Scholar 

  55. E.D. Moreau and S.F. Corbin: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 3906–19.

    Article  Google Scholar 

  56. C. Tadgell and S.F. Corbin: Can. Metall. Q., 2020, vol. 59, pp. 288–96.

    Article  CAS  Google Scholar 

  57. S. Steuer and R.F. Singer: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 3545–53.

    Article  Google Scholar 

  58. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Compd., 2009, vol. 469, pp. 270–5.

    Article  CAS  Google Scholar 

  59. C.W. Sinclair: J. Phase Equilib., 1999, vol. 20, pp. 361–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their helpful and constructive comments that significantly contributed to improving the final version of the paper. This research was supported by Iran National Science Foundation (INSF) under Grant No. 96006047. The contribution of Armin Salmasi was partly funded by the Swedish Foundation for Strategic Research (SSF), Contract RMA15-0062.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Majid Pouranvari or Ali Ghasemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 20, 2021; accepted October 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouranvari, M., Ghasemi, A. & Salmasi, A. On the Inability of the Moving Interface Model to Predict Isothermal Solidification Time During Transient Liquid Phase (TLP) Bonding of Ni-Based Superalloys. Metall Mater Trans A 53, 126–135 (2022). https://doi.org/10.1007/s11661-021-06497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06497-x

Navigation