Skip to main content
Log in

The Effects of Deformation Conditions and Microstructural Features on Typical Textures of a Non-oriented Electrical Steel in Electrically Assisted Forming

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of deformation conditions on typical textures and the relationship between microstructural features and typical textures in a non-oriented electrical steel during electrically assisted forming were investigated. Specimens processed by electrically assisted tensile forming were measured with electron back-scatter diffraction (EBSD). Results show that Joule heat reduces cube, Goss texture, and θ-fiber but enhances rotated cube texture and γ-fiber. A stronger cooling rate brings a remarkable decrease of cube texture and γ-fiber and an increase of rotated cube and θ-fiber. It is concluded that electric current itself enhances cube texture and Goss texture. The variations of grain size and number fraction of rotated cube and Goss grains contribute to the volume fraction variations of rotated cube and Goss texture. The increases of the sum of Σ3 and Σ9 grain boundaries, grain boundary curvature, and microstructural defects in Goss grains are responsible for the enhancement of Goss texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.J.G. Landgraf, T. Yonamine, M. Emura, and M.A. Cunha: J. Magn. Magn. Mater., 2003, vol. 254–255, pp. 328–30.

    Article  Google Scholar 

  2. H.G. Kang, K.M. Lee, M.Y. Huh, J.S. Kim, J.T. Park, and O. Engler: J. Magn. Magn. Mater., 2011, vol. 323, pp. 2248–53.

    Article  CAS  Google Scholar 

  3. L. Kestens, S. Jacobs: Texture Stress Microstruct., 2008, p. 173083.

  4. A.-H. Chen, H.-R. Guo, H.-L. Li, and T. Emi: J. Iron Steel Res. Int., 2014, vol. 21, pp. 269–74.

    Article  CAS  Google Scholar 

  5. M.H. Han, S. Lee, N.J. Kim, K.J. Lee, T. Chung, and G. Byun: Mater. Sci. Eng. A., 1999, vol. 264, pp. 47–59.

    Article  Google Scholar 

  6. Y.-B. Jiang, L. Guan, G.-Y. Tang, B. Cheng, and D.-B. Liu: Int. J. Min. Met. Mater., 2015, vol. 22, pp. 411–6.

    Article  CAS  Google Scholar 

  7. X. Li, G. Tang, J. Kuang, X. Li, and J. Zhu: Mater. Sci. Eng. A., 2014, vol. 612, pp. 406–13.

    Article  CAS  Google Scholar 

  8. W. Li, Y. Shen, and C. Xie: Mater. Sci. Tech.-Lond., 2015, vol. 31, pp. 1577–82.

    Article  CAS  Google Scholar 

  9. M.-J. Kim, K. Lee, K.H. Oh, I.-S. Choi, H.-H. Yu, S.-T. Hong, and H.N. Han: Scr. Mater., 2014, vol. 75, pp. 58–61.

    Article  CAS  Google Scholar 

  10. W. Zeng, Y. Shen, N. Zhang, X. Huang, J. Wang, G. Tang, and A. Shan: Scr. Mater., 2012, vol. 66, pp. 147–50.

    Article  CAS  Google Scholar 

  11. W.A. Salandro, J.J. Jones, C. Bunget, L. Mears, and J.T. Roth: Electrically Assisted Forming, Springer, Switzerland, 2015, pp. 249–51.

    Book  Google Scholar 

  12. J. Salinas-Beltrán, A. Salinas-Rodríguez, E. Gutiérrez-Castañeda, and R. Deaquino Lara: J. Magn. Magn. Mater., 2016, vol. 406, pp. 159–65.

    Article  Google Scholar 

  13. A. Sonboli, M.R. Toroghinejad, H. Edris, and J.A. Szpunar: J. Magn. Magn. Mater., 2015, vol. 385, pp. 331–8.

    Article  CAS  Google Scholar 

  14. C. Gu, P. Yang, and W. Mao: Acta Metall. Sin.-Engl., 2019, vol. 55, pp. 181–90.

    CAS  Google Scholar 

  15. Y.B. Xu, Y.X. Zhang, Y. Wang, C.G. Li, G.M. Cao, Z.Y. Liu, and G.D. Wang: Scr. Mater., 2014, vol. 87, pp. 17–20.

    Article  CAS  Google Scholar 

  16. F. Fang, Y.X. Zhang, X. Lu, Y. Wang, M.F. Lan, G. Yuan, and G.D. Wang: Scr. Mater., 2018, vol. 147, pp. 33–6.

    Article  CAS  Google Scholar 

  17. T. Nguyen-Minh, J.J. Sidor, R.H. Petrov, and L.A.I. Kestens: Scr. Mater., 2012, vol. 67, pp. 935–8.

    Article  CAS  Google Scholar 

  18. Y. Onuki, R. Hongo, K. Okayasu, and H. Fukutomi: Acta Mater., 2013, vol. 61, pp. 1294–302.

    Article  CAS  Google Scholar 

  19. M. Mehdi, Y. He, E.J. Hilinski, L.A.I. Kestens, A. Edrisy: Steel Res. Int., 2019, p. 1800582.

  20. K. Ushioda and W.B. Hutchinson: ISIJ Int., 1989, vol. 29, pp. 862–7.

    Article  CAS  Google Scholar 

  21. C.W. Chen: Magnetism and Metallurgy of Soft Magnetic Materials, 1st ed. North-Holland Publishing Co., Amsterdam, 1977, pp. 64–5.

    Google Scholar 

  22. Y. Oda, M. Kohno, and A. Honda: J. Magn. Magn. Mater., 2008, vol. 320, pp. 2430–5.

    Article  CAS  Google Scholar 

  23. K. Honma, T. Nozawa, H. Kobayashi, Y. Shimoyama, I. Tachino, and K. Miyoshi: IEEE T. Magn., 1985, vol. 21, pp. 1903–8.

    Article  Google Scholar 

  24. M. Mehdi, Y. He, E.J. Hilinski, and A. Edrisy: J. Magn. Magn. Mater., 2017, vol. 429, pp. 148–60.

    Article  CAS  Google Scholar 

  25. S. Diligent, E. Gautier, X. Lemoine, and M. Berveiller: Acta Mater., 2001, vol. 49, pp. 4079–88.

    Article  CAS  Google Scholar 

  26. S. Birosca, A. Nadoum, D. Hawezy, F. Robinson, and W. Kockelmann: Acta Mater., 2020, vol. 185, pp. 370–81.

    Article  CAS  Google Scholar 

  27. Y. Ushigami, M. Mizokami, M. Fujikura, T. Kubota, H. Fujii, and K. Murakami: J. Magn. Magn. Mater., 2003, vol. 254, pp. 307–14.

    Article  Google Scholar 

  28. M. Yabumoto, S. Arai, R. Kawamata, M. Mizokami, and T. Kubota: J. Mater. Eng. Perform., 1997, vol. 6, pp. 713–21.

    Article  CAS  Google Scholar 

  29. S. Shahandeh and M. Militzer: Philos. Mag., 2013, vol. 93, pp. 3231–47.

    Article  CAS  Google Scholar 

  30. T. Yonamine and F.J.G. Landgraf: J. Magn. Magn. Mater., 2004, vol. 272–276, pp. e565–6.

    Article  Google Scholar 

  31. Y. Hayakawa and M. Kurosawa: Acta Mater., 2002, vol. 50, pp. 4527–34.

    Article  CAS  Google Scholar 

  32. H.-K. Park, S.-D. Kim, S.-C. Park, J.-T. Park, and N.-M. Hwang: Scr. Mater., 2010, vol. 62, pp. 376–8.

    Article  CAS  Google Scholar 

  33. G. Hu, G. Tang, Y. Zhu, and C. Shek: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 3484–90.

    Article  Google Scholar 

  34. G. Hu, Y. Zhu, C. Shek, and G. Tang: J. Mater. Res., 2011, vol. 26, pp. 917–22.

    Article  CAS  Google Scholar 

  35. T.J. Grimm and L. Mears: J. Manuf. Process., 2020, vol. 56, pp. 1263–9.

    Article  Google Scholar 

  36. C.D. Ross, D.B. Irvin, and J.T. Roth: J. Eng. Mater.-Trans. ASME., 2007, vol. 129, pp. 342–7.

    Article  CAS  Google Scholar 

  37. F. Bachmann, R. Hielscher, P.E. Jupp, W. Pantleon, H. Schaeben, and E. Wegert: J. Appl. Cryst., 2010, vol. 43, pp. 1338–55.

    Article  CAS  Google Scholar 

  38. F. Bachmann, R. Hielscher, and H. Schaeben: Ultramicroscopy., 2011, vol. 111, pp. 1720–33.

    Article  CAS  Google Scholar 

  39. G. Nolzea and R. Hielscher: J. Appl. Cryst., 2016, vol. 49, pp. 1786–802.

    Article  Google Scholar 

  40. R. Hielscher, C.B. Silbermann, E. Schmidl, and J. Ihlemann: J. Appl. Cryst., 2019, vol. 52, pp. 984–96.

    Article  CAS  Google Scholar 

  41. Y.-W. Chen, Y.-T. Tsai, P.-Y. Tung, T. Shao-Pu, C. Chih-Yuan, W. Shing-Hao, and Y. Jer-Ren: Mater. Charact., 2018, vol. 139, pp. 49–58.

    Article  CAS  Google Scholar 

  42. M. Hölscher, D. Raabe, and K. Lücke: Steel Res., 1991, vol. 62, pp. 567–75.

    Article  Google Scholar 

  43. J.E. Burke and D. Turnbull: Prog. Met. Phys., 1952, vol. 3, pp. 220–92.

    Article  CAS  Google Scholar 

  44. J. Harase, R. Shimizu, and D.J. Dingley: Acta Metall., 1991, vol. 39, pp. 763–70.

    Article  CAS  Google Scholar 

  45. B. Zhao, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 2011, vol. 59, pp. 3510–8.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 18, 2021; accepted October 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, B., Li, L. The Effects of Deformation Conditions and Microstructural Features on Typical Textures of a Non-oriented Electrical Steel in Electrically Assisted Forming. Metall Mater Trans A 53, 63–73 (2022). https://doi.org/10.1007/s11661-021-06490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06490-4

Navigation