Abstract
This work investigates the effect of increasing both martensite phase and ferrite phase strength on tensile properties and fracture behavior of dual-phase (DP) steels. The martensite phase strength is varied by changing its carbon contents and tempering process, whereas the ferrite phase strength is varied by dispersion of nano-sized vanadium carbides (VC) precipitates in the ferrite phase and also by changing its total fraction in DP samples. It is found that strengthening of the martensite phase improved the tensile strength with almost no loss of the tensile strength–uniform elongation balance. This is attributed to the enhancement of strain partitioning between the ferrite and martensite phase so that the work hardening rate increased. On the other hand, strengthening of ferrite phase effectively improved both the tensile strength and the tensile strength–post-uniform elongation balance due to suppression of strain partitioning which likely promoted homogenous deformation after necking. More importantly, a simultaneous increase in the strength of martensite phase and ferrite phase leads to a moderate phase strength difference, which is revealed as a promising strategy to achieve high strength in addition to a good balance of tensile strength, uniform elongation, and post-uniform elongation in low-carbon DP steels. Furthermore, the quantitative analysis of void formation reveals that decohesion of the interface between the ferrite phase and martensite phase is the dominant fracture mechanism, which is less likely to be affected by phase strength difference.
This is a preview of subscription content, access via your institution.









References
L.F. Ramos, D.K. Matlock, and G. Krauss: Metall. Trans. A., 1979, vol. 10, pp. 259–61.
G. Krauss: Metall. Trans. A., 1987, vol. 10, pp. 671–9.
C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–441.
G.R. Speich and R.L. Miller: in Structure and Properties of Dual Phase Steels: R.A. Kott and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 145–82.
A.A. Sayed and S. Kheirandish: Mater. Sci. Eng. A., 2012, vol. 532, pp. 21–5.
Y. Tomota: J. Mater. Sci., 1990, vol. 25, pp. 5179–84.
O.R. Jardim, W.P. Longo, and K.K. Chawla: Metallography., 1984, vol. 17, pp. 123–30.
A. Nishimoto, Y. Hosoya, and K. Nakaoka: in Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Bramfitt, eds., TMS AIME, Warrendale, PA, 1981, pp. 447–53.
J. Kang, Y. Ososkov, J. Embury, D. Wilkinson, C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, A. Bareggi, M. Di Michiel, and C. Verdu: Scr. Mater., 2007, vol. 56, pp. 999–1002.
R.G. Davies: in Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Bramfitt, eds., TMS AIME, Warrendale, PA, 1981, pp. 265–77.
G.R. Speich: Metall. Trans., 1972, vol. 3, pp. 1043–54.
I. Machida, M. Narita, R. Kureura, M. Morita, N. Aoyagi, and M. Sano: SAE Technical Paper, No. 940536, SAE International, Warrendale, PA, 1994.
N. Kamikawa, M. Hirohashi, and Y. Sato: Elango C, G. Miyamoto and T. Furuhara: ISIJ Int., 2015, vol. 55, pp. 1781–90.
E. Chandiran, Y. Sato, N. Kamikawa, G. Miyamoto, and T. Furuhara: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 4111–26.
T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito, and T. Maki: ISIJ Int., 2008, vol. 48(8), pp. 1038–45.
K. Kuo: J. Iron Steel. Inst., 1956, vol. 184, pp. 258–68.
G. Miyamoto, R. Hori, B. Poorganji, and T. Furuhara: ISIJ Int., 2011, vol. 51, pp. 1733–9.
G. Krauss: Mater. Sci. Eng. A., 1999, vol. 275, pp. 40–57.
E. Tekin and P.M. Kelly: J. Iron Steel Inst., 1965, vol. 203, pp. 715–20.
E. Smith: Acta Metal., 1966, vol. 14, pp. 583–93.
R.A. Grange, C.R. Hribal, and L.F. Porter: Metall. Trans. A., 1977, vol. 8, pp. 1775–85.
G. Krauss: Steel Res. Inter., 2018, vol. 89, pp. 1–18.
Y. Zhang, C. Zhao, M. Sato, G. Miyamoto, and T. Furuhara: ISIJ Int., 2021, vol. 61(5), pp. 1641–9.
J. Gerbase, J.D. Emburry, and R.M. Hobbs: in Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 114–44.
T. Sakaki, K. Sugimoto, and T. Fukuzato: Acta Metall., 1983, vol. 31, pp. 1737–46.
D.K. Matlock, G. Krauss, L. F. Ramos, and G. S. Huppi: in Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 62–90.
B. Grushko and B.-Z. Weiss: Scr. Met., 1988, vol. 23, pp. 865–70.
T. Tanaka, M. Nishida, K. Hashiquchi, and T. Kato: in Structure and Properties of Dual-Phase Steels. R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 221–41.
N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara: Acta Mater., 2015, vol. 83, pp. 383–96.
N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, and T. Furuhara: ISIJ Int., 2014, vol. 54, pp. 212–21.
A.-P. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, and L. Brassart: Acta Mater., 2014, vol. 73, pp. 298–311.
H. Ghassemi-Armaki, R. Maaß, S. Bhat, S. Sriram, J. Greer, and K. Kumar: Acta Mater., 2014, vol. 62, pp. 197–211.
R. Priestner and C.L. Aw: Scrip. Met., 1984, vol. 18, pp. 133–6.
U. Liedl, S. Traint, and E. Werner: Comput. Mater. Sci., 2002, vol. 25, pp. 122–8.
M. Asadi, B.C.D. Cooman, and H. Palkowski: Mater. Sci. Eng. A., 2012, vol. 538, pp. 42–52.
K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A., 2014, vol. 604, pp. 135–41.
G. Avramovic-Cingara, C.A. Saleh, M. Jain, and D. Wilkinson: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 3117–27.
X.J. He, N. Terao, and A. Berghezan: J Mater Sci., 1984, vol. 18, pp. 367–73.
Acknowledgments
This research was financially supported partly by a project of “Creation of New Principles in the Multi-scale Design of Steels Based on Light Element Strategy” through the Core Research for Evolutional Science and Technology in the Japan Science and Technology Agency (JST-CREST) and partly by a project of “Research on the Relation between Microstructure and Ductile Fracture in Steel” in the Iron and Steel Institute of Japan (ISIJ), which are gratefully appreciated. EC thanks financial support from the Japan International Cooperation Agency (JICA) through the FRIENDSHIP scholarship program. NK also thanks financial support from the Grant-in-Aid for Young Scientists (A) (Grant No. 23686103) through the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted June 25, 2021; accepted September 28, 2021.
Rights and permissions
About this article
Cite this article
Chandiran, E., Kamikawa, N., Sato, Y. et al. Improvement of Strength–Ductility Balance by the Simultaneous Increase in Ferrite and Martensite Strength in Dual-Phase Steels. Metall Mater Trans A 52, 5394–5408 (2021). https://doi.org/10.1007/s11661-021-06477-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-021-06477-1