Skip to main content
Log in

Dwell-Fatigue of Ni-Based Superalloys with Serrated and Planar Grain Boundary Morphologies: The Role of the γ′ Phase on Strain Accumulation and Cavitation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of grain boundary (GB) morphology on the cavitation behavior in a Ni-based superalloy, RR1000, was studied during elevated temperature dwell-fatigue at 700 °C. Following a solution heat treatment, the material was control cooled at two different rates, resulting in high angle GB morphologies that were tailored as either serrated or planar. The resulting γ′ precipitate structures were characterized near GBs and within grains. Along serrated GBs coarsened and elongated γ′ precipitates formed and consequently created adjacent regions that were denuded of γ′ precipitates. Cyclic dwell-fatigue experiments were performed at low and high stress amplitudes to vary the amount of imparted strain on the specimens. A combination of electron backscatter diffraction and digital image correlation were used to resolve strain localization relative to the GBs, in which strain accumulation was found to precede cavity formation. Additionally, the regions denuded of the γ′ precipitates were observed to localize strain and to be initial sites of cavitation. These results present a quantitative strain analysis between two variants of an RR1000 alloy, which provides the micromechanical rationale to assess the increased proclivity for serrated GBs to form cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.L.W. Carter, M.W. Kuper, M.D. Uchic, and M.J. Mills: Mater. Sci. Eng. A., 2014, vol. 605, pp. 127–36. .

    Article  CAS  Google Scholar 

  2. M.E. Kassner and T.A. Hayes: Int. J. Plast., 2003, vol. 19, pp. 1715–48. .

    Article  Google Scholar 

  3. H.Y. Li, J.F. Sun, M.C. Hardy, H.E. Evans, S.J. Williams, T.J.A. Doel, and P. Bowen: Acta Mater., 2015, vol. 90, pp. 355–69. .

    Article  CAS  Google Scholar 

  4. S. Shinde and P. Gravett: J. ASTM Int., 2011, vol. 8, pp. 1–11. .

    Article  CAS  Google Scholar 

  5. R.E. Stoltz and A.G. Pineau: Mater. Sci. Eng., 1978, vol. 34, pp. 275–84. .

    Article  CAS  Google Scholar 

  6. D.U. Furrer and H.-J. Fecht: Acta Metall., 1999, vol. 40, pp. 1215–20. .

    CAS  Google Scholar 

  7. F. Alexandre, S. Deyber, and A. Pineau: Scripta Mater., 2004, vol. 50, pp. 25–30. .

    Article  CAS  Google Scholar 

  8. M. Detrois, J. Rotella, M. Hardy, S. Tin, and M.D. Sangid: Integr. Mater. Manuf. Innov., 2017, https://doi.org/10.1007/s40192-017-0103-6.

    Article  Google Scholar 

  9. H.L. Danflou, M. Marty, and A. Walder: TMS Superalloys, 1992, pp. 63–72.

  10. R.J. Mitchell, J.A. Lemsky, R. Ramanathan, H.Y. Li, K.M. Perkins, and L.D. Connor: Superalloys 2008, 2008, pp. 347–56.

  11. H.U. Hong, I.S. Kim, B.G. Choi, M.Y. Kim, and C.Y. Jo: Mater. Sci. Eng. A., 2009, vol. 517, pp. 125–31. .

    Article  CAS  Google Scholar 

  12. Y.T. Tang, A.J. Wilkinson, and R.C. Reed: Metall. Mater. Trans. A., 2018, https://doi.org/10.1007/s11661-018-4671-7.

    Article  Google Scholar 

  13. A.K. Koul and G.H. Gessinger: Acta Metall., 1983, vol. 31, pp. 1061–9. .

    Article  CAS  Google Scholar 

  14. A.K. Koul and R. Thamburaj: Metall. Trans. A., 1985, vol. 16, pp. 17–26. .

    Article  Google Scholar 

  15. R.J. Mitchell, H.Y. Li, and Z.W. Huang: J. Mater. Process. Technol., 2009, vol. 209, pp. 1011–7. .

    Article  CAS  Google Scholar 

  16. D.M. Knowles and D.W. Hunt: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 3165–72. .

    Article  CAS  Google Scholar 

  17. R.C. Gifkins: Mater. Charact., 1994, vol. 32, pp. 59–77. .

    Article  CAS  Google Scholar 

  18. Y. Shen, W. Li, D.L. Sulsky, and H.L. Schreyer: Int. J. Mech. Sci., 2000, vol. 42, pp. 2167–89. .

    Article  Google Scholar 

  19. L.C. Lim: Acta Metall., 1987, vol. 35, pp. 1663–73. .

    Article  CAS  Google Scholar 

  20. L.C. Lim: Acta Metall., 1989, vol. 37, pp. 969–77. .

    Article  CAS  Google Scholar 

  21. B.F. Dyson, M.S. Loveday, and M.J. Rodgers: Proc R. Soc. Lond. A., 1976, vol. 349, pp. 245–59. .

    Article  Google Scholar 

  22. J.N. Greenwood, D.R. Miller, and J.W. Suiter: Acta Metall., 1954, vol. 2, pp. 250–8. .

    Article  CAS  Google Scholar 

  23. R.C. Gifkins: Acta Metall., 1956, vol. 4, pp. 98–9. .

    Article  Google Scholar 

  24. H. Riedel: Acta Metall., 1984, vol. 32, pp. 313–21. .

    Article  CAS  Google Scholar 

  25. D.P. Field and B.L. Adams: Acta Metall. Mater., 1992, vol. 40, pp. 1145–57. .

    Article  CAS  Google Scholar 

  26. W. Abuzaid, H. Sehitoglu, and J. Lambros: Mater. Sci. Eng. A., 2012, vol. 561, pp. 507–19. .

    Article  CAS  Google Scholar 

  27. L.J. Carroll, C. Cabet, M.C. Carroll, and R.N. Wright: Int. J. Fatigue., 2013, vol. 47, pp. 115–25. .

    Article  CAS  Google Scholar 

  28. B.F. Dyson and M.J. Rodgers: Met. Sci., 1974, vol. 8, pp. 261–6. .

    Article  CAS  Google Scholar 

  29. P. Kontis, E. Alabort, D. Barba, D.M. Collins, A.J. Wilkinson, and R.C. Reed: Acta Mater., 2017, vol. 124, pp. 489–500. .

    Article  CAS  Google Scholar 

  30. R.C. Buckingham, C. Argyrakis, M.C. Hardy, and S. Birosca: Mater. Sci. Eng. A., 2016, vol. 654, pp. 317–28. .

    Article  CAS  Google Scholar 

  31. I.M. Parr, T.J. Jackson, M. Hardy, D.J. Child, C. Argyrakis, K. Kevers, V. Saraf, and J.M. Stumpf: Superalloys 2016 Proc. 13th Int. Symp. Superalloys, 2016, pp. 447–56.

  32. GRABIT: MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/7173-grabit. Retrieved April 30, 2015.

  33. W.Z. Abuzaid, M.D. Sangid, J.D. Carroll, H. Sehitoglu, and J. Lambros: J. Mech. Phys. Solids., 2012, vol. 60, pp. 1201–20. .

    Article  CAS  Google Scholar 

  34. Y.L. Dong and B. Pan: Exp. Mech., 2017, vol. 57, pp. 1161–81. .

    Article  Google Scholar 

  35. J. Tracy, A. Waas, and S. Daly: J. Am. Ceram. Soc., 2015, vol. 98, pp. 1898–906. .

    Article  CAS  Google Scholar 

  36. M.A. Sutton, N. Li, D. Garcia, N. Cornille, J.J. Orteu, S.R. McNeill, H.W. Schreier, and X. Li: Meas. Sci. Technol., 2006, vol. 17, p. 2613. .

    Article  CAS  Google Scholar 

  37. A.W. Mello, T.A. Book, A. Nicolas, S.E. Otto, C.J. Gilpin, and M.D. Sangid: Exp. Mech., 2017, vol. 59, pp. 1–15. .

    Google Scholar 

  38. A.W. Mello, A. Nicolas, and M.D. Sangid: Mater. Sci. Eng. A., 2017, vol. 695, pp. 332–41. .

    Article  CAS  Google Scholar 

  39. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods., 2012, vol. 9, pp. 671–5. .

    Article  CAS  Google Scholar 

  40. F. Di Gioacchino and J. Quinta Da Fonseca: Int. J. Plast., 2015, vol. 74, pp. 92–109. .

    Article  CAS  Google Scholar 

  41. A. Venkataraman, M. Linne, S. Daly, and M.D. Sangid: Materialia., 2019, https://doi.org/10.1016/j.mtla.2019.100499.

    Article  Google Scholar 

  42. E.J. Lieberman, A.D. Rollett, R.A. Lebensohn, and E.M. Kober: Model. Simul. Mater. Sci. Eng., 2015, vol. 23, p. 035005. .

    Article  CAS  Google Scholar 

  43. A. Rovinelli, M.D. Sangid, H. Proudhon, Y. Guilhem, R.A. Lebensohn, and W. Ludwig: J. Mech. Phys. Solids., 2018, vol. 115, pp. 208–29. .

    Article  CAS  Google Scholar 

  44. F. Bourdin, J.C. Stinville, M.P. Echlin, P.G. Callahan, W.C. Lenthe, C.J. Torbet, D. Texier, F. Bridier, J. Cormier, P. Villechaise, T.M. Pollock, and V. Valle: Acta Mater., 2018, vol. 157, pp. 307–25. .

    Article  CAS  Google Scholar 

  45. C.L. Qiu and P. Andrews: Mater. Charact., 2013, vol. 76, pp. 28–34. .

    Article  CAS  Google Scholar 

  46. A.N. Stroh: Proc. R. Soc. A., 1954, vol. 223, pp. 404–14. .

    Google Scholar 

  47. J.J. Hauser and B. Chalmers: Acta Metall., 1961, vol. 9, pp. 802–18. .

    Article  CAS  Google Scholar 

  48. J.D. Livingston and B. Chalmers: Acta Metall., 1957, vol. 5, pp. 322–7. .

    Article  CAS  Google Scholar 

  49. C. Efstathiou, H. Sehitoglu, and J. Lambros: Int. J. Plast., 2010, vol. 26, pp. 93–106. .

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the dwell fatigue and cavitation analysis at serrated grain boundaries was provided by the National Science Foundation (Grant Number CMMI 13-34664) and Rolls-Royce Corporation. Partial support for J.R. was provided by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program (NDSEG). The grain boundary sliding analysis and time commitment of A.V. was supported by The U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Award #DE-SC0014281).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Sangid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 17, 2021; accepted Sep 1, 2021.

Appendix

Appendix

To minimize the effect of trackable features on the strain measurement, a sensitivity study of the subset size versus the standard deviation of axial strain was conducted on all specimens before a subset and step size were chosen to perform the DIC strain analysis. The sensitivity analysis was performed using two images, taken one after another on a non-deformed specimen within the AOI. The subset size and the standard deviation of strain share an inverse relationship. This relationship was established for these images and only subset and step sizes resulting in a standard deviation of less than 0.1 pct are deemed acceptable.[49] An image of one field of view is shown below. The six squares within the bounding box represent examples of the 1.23 µm subset. A magnified view of example subsets can be seen within Figure 15 (b).

Fig. 15
figure 15

(a) One field of view of an area of interest with a fiducial marker. (b) enlarged inset showing the 1.23 µm subset, relative to the trackable features via DIC

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotella, J., Mello, A.W., Venkataraman, A. et al. Dwell-Fatigue of Ni-Based Superalloys with Serrated and Planar Grain Boundary Morphologies: The Role of the γ′ Phase on Strain Accumulation and Cavitation. Metall Mater Trans A 52, 5079–5095 (2021). https://doi.org/10.1007/s11661-021-06454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06454-8

Navigation