Skip to main content
Log in

Effect of Laser Welding Parameters on the Microstructure and Mechanical Properties of Dissimilar Hastelloy X/Haynes 188 Joints

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Laser welding is currently a versatile and reliable assembly technique. To save weight in aerostructures and propulsion units and to reduce thermal distortions and the heat-affected zones in these assemblies, autogenous laser welding seems promising. This experimental work addresses dissimilar autogenous laser welding of thin alloy sheets using a Yb:YAG source and a particular optical fibre setting. Hastelloy X and Haynes 188 are the two base metals studied for this assembly. An experimental design allows us to determine the weldability domain. The macro- and microstructure and mechanical properties of the weld seams are investigated. EBSD and EDS analysis revealed microstructural and chemical heterogeneities in the high-power welded seam, but XRD results demonstrated a homogeneous depletion of the carbide density in its fusion zone. Despite such microstructural features, the mechanical properties of obtained assemblies were found to be satisfactory and slightly greater than those of the weaker Hastelloy X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Rao: Advances in Gas Turbine Technology, InTechOpen, 2011, 13.

  2. T.M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–15. .

    Article  CAS  Google Scholar 

  3. A. Devaux, E. Georges, and P. Héritier: Adv. Mater. Res., 2011, vol. 278, pp. 405–10. .

    Article  CAS  Google Scholar 

  4. M. Sathishkumar and M. Manikandan: J. Mater. Eng. Perform., 2020, vol. 29, pp. 5395–408. .

    Article  CAS  Google Scholar 

  5. F. Zapirain, F. Zubiri, F. Garciandía, I. Tolosa, S. Chueca, and A. Goiria: Phys. Procedia., 2011, vol. 12, pp. 105–12. .

    Article  CAS  Google Scholar 

  6. A. Giesen and J. Speiser: IEEE J. Sel. Top. Quantum Electron., 2007, vol. 13, pp. 598–609. .

    Article  CAS  Google Scholar 

  7. G. Verhaeghe and B. Dance: International Congress on Applications of Lasers & Electro-Optics. Temecula, California, USA, Laser Institute of America, 2008, p. 710.

    Book  Google Scholar 

  8. ASM International, ed., ASM handbook, 10th editon, ASM International, Materials Park, Ohio, 1990.

  9. J.N. DuPont, J.C. Lippold, S.D. Kiser: Welding Metallurgy and Weldability of Nickel-base Alloys, (n.d.) 456.

  10. P. von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer: Metall. Mater. Trans. A., 2015, vol. 46A, pp. 1678–88. .

    Article  Google Scholar 

  11. E.M. Lehockey, G. Palumbo, and P. Lin: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 3069–79. .

    Article  CAS  Google Scholar 

  12. J. Graneix, J.-D. Beguin, J. Alexis, and T. Masri: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2007–16. .

    Article  Google Scholar 

  13. J. Graneix, J.D. Beguin, J. Alexis, and T. Masri: Adv. Mater. Res., 2015, vol. 1099, pp. 61–70. .

    Article  Google Scholar 

  14. J. Hofweber, N.F. Fiore, and W.T. Ebihara: Mater. Sci. Eng., 1977, vol. 27, pp. 157–62. .

    Article  CAS  Google Scholar 

  15. W. Andreasch, R. Huber, and D. Mock: Laser Tech. J., 2011, vol. 8, pp. 38–41. .

    Article  Google Scholar 

  16. J. Graneix, J.-D. Beguin, F. Pardheillan, J. Alexis, and T. Masri: MATEC Web Conf., 2014, vol. 14, p. 13006. .

    Article  Google Scholar 

  17. J.J. Pepe and W.F. Savage: Weld. J., 1970, vol. 49(12), pp. 545s–53s. .

    Google Scholar 

  18. M. Pakniat, F. Malek Ghaini, and M.J. Torkamany: Mater. Des., 2016, vol. 106, pp. 177–83. .

    Article  CAS  Google Scholar 

  19. R. Sihotang, P. Sung-Sang, and B. Eung-Ryul: Mater. Res. Innov., 2014, vol. 18(sup2), pp. S2-1074-S2-1080. .

    Article  Google Scholar 

  20. J. Lippold, J. Sowards, G. Murray, B. Alexandrov, and A. Ramirez: Hot Cracking Phenomena in Welds II. Springer, New York, 2008, pp. 147–70.

    Book  Google Scholar 

  21. A. Ghasemi, A. Mohammad Kolagar, and M. Pouranvari: Mater. Sci. Eng. A., 2020, vol. 793, p. 139861. .

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to EXAMECA for their financial support, in particular for providing the Haynes 188 and Hastelloy X alloys. Furthermore, we wish to thank Cédric Bellot, Director of ACRDM, for giving our team access to the ESRF and Marie-Christine Laffont, CIRIMAT, for TEM observations.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Alexis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 10, 2021; accepted August 29, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexis, J., Graneix, J. & Balcaen, Y. Effect of Laser Welding Parameters on the Microstructure and Mechanical Properties of Dissimilar Hastelloy X/Haynes 188 Joints. Metall Mater Trans A 52, 5055–5065 (2021). https://doi.org/10.1007/s11661-021-06452-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06452-w

Navigation