Abstract
Titanium is an important alloying addition to γ/γ′ cobalt-based superalloys that enhances the high temperature microstructural stability and make the alloys lighter. In this work, we probe the role of Ti composition on the phase stability and oxidation behavior of Co–30Ni–10Al–8Cr–5Mo–2Nb superalloys. With Ti addition, the γ′-solvus temperature is enhanced and the γ′-precipitate shape changes from spherical to rounded cuboids. Addition of 4 at. pct Ti to the alloy promotes topologically-close-packed (TCP) phase formation that are rich in Co, Cr, and Mo. During oxidation at 900 °C, Ti was found to facilitate the early formation of passivating oxide layers (spinel CoCr2O4/CoAl2O4) on the exposed surfaces, however, it was not effective in reducing the oxidation-induced mass gain. Microstructural analysis reveals that Ti delays the Al2O3 layer formation eventually leading to faster oxidation kinetics. Additionally, we also found formation of (Ti,Nb)N in the γ′ denuded zones near the alloy-oxide interface.
Similar content being viewed by others
References
C.S. Lee: PhD Thesis, The University of Arizona, 1971.
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science., 2006, vol. 312, pp. 90–1.
S.K. Makineni, B. Nithin, and K. Chattopadhyay: Scripta Mater., 2015, vol. 98, pp. 36–9.
S.K. Makineni, B. Nithin, and K. Chattopadhyay: Acta Mater., 2015, vol. 85, pp. 85–94.
S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee, and K. Chattopadhyay: Acta Mater., 2015, vol. 97, pp. 29–40.
F.L. Reyes Tirado, J. Perrin Toinin, and D.C. Dunand: Acta Mater., 2018, vol. 151, pp. 137–48.
Y. Chen, C. Wang, J. Ruan, S. Yang, T. Omori, R. Kainuma, K. Ishida, J. Han, Y. Lu, and X. Liu: Acta Mater., 2020, vol. 188, pp. 652–64.
Y. Chen, C. Wang, J. Ruan, T. Omori, R. Kainuma, K. Ishida, and X. Liu: Acta Mater., 2019, vol. 170, pp. 62–74.
M.P. Singh, S.K. Makineni, and K. Chattopadhyay: Mater. Sci. Eng. A., 2020, vol. 794, p. 139826.
P. Pandey, S. Mukhopadhyay, C. Srivastava, S.K. Makineni, and K. Chattopadhyay: Mater. Sci. Eng. A., 2020, vol. 790, p. 139578.
C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, and M. Göken: Acta Mater., 2017, vol. 135, pp. 244–51.
J.J. Ruan, X.J. Liu, S.Y. Yang, W.W. Xu, T. Omori, T. Yang, B. Deng, H.X. Jiang, C.P. Wang, R. Kainuma, and K. Ishida: Intermetallics., 2018, vol. 92, pp. 126–32.
H.J. Im, S.K. Makineni, B. Gault, F. Stein, D. Raabe, and P.-P. Choi: Scripta Mater., 2018, vol. 154, pp. 159–62.
S.K. Makineni, M.P. Singh, and K. Chattopadhyay: Annu. Rev. Mater. Res., 2021, vol. 51, pp. 187–208.
P. Pandey, S.K. Makineni, A. Samanta, A. Sharma, S.M. Das, B. Nithin, C. Srivastava, A.K. Singh, D. Raabe, B. Gault, and K. Chattopadhyay: Acta Mater., 2019, vol. 163, pp. 140–53.
N. Baler, P. Pandey, M.P. Singh, S.K. Makineni, and K. Chatopadhyay: TMS, Superalloys, 2020.
K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Mater. Trans., 2008, vol. 49, pp. 1474–9.
B. Gao, L. Wang, Y. Liu, X. Song, S.Y. Yang, and A. Chiba: Corros. Sci., 2019, vol. 157, pp. 109–15.
C.A. Stewart, A. Suzuki, R.K. Rhein, T.M. Pollock, and C.G. Levi: Metall Mater. Trans. A., 2019, vol. 50A, pp. 5445–58.
M. Weiser, M.C. Galetz, H.-E. Zschau, C.H. Zenk, S. Neumeier, M. Göken, and S. Virtanen: Corros. Sci., 2019, vol. 156, pp. 84–95.
L. Klein, Y. Shen, M.S. Killian, and S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2713–20.
S.M. Das, M.P. Singh, and K. Chattopadhyay: Corros. Sci., 2020, vol. 172, p. 108683.
Y. Chen, F. Xue, C. Wang, X. Li, Q. Deng, X. Yang, H. Long, W. Li, L. Yang, and A. Li: Corros. Sci., 2019, vol. 161, p. 108179.
D.-W. Chung, J.P. Toinin, E.A. Lass, D.N. Seidman, and D.C. Dunand: J. Alloys Compds., 2020, vol. 832, p. 154790.
S. Mukhopadhyay, P. Pandey, N. Baler, K. Biswas, S.K. Makineni, and K. Chattopadhyay: Acta Mater., 2021, vol. 208, p. 116736.
P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, and D.N. Seidman: Mater. Sci. Eng. A., 2017, vol. 705, pp. 122–32.
S.P. Hagen, M. Weiser, D. Kubacka, E. Spiecker, and S. Virtanen: Oxid Met., 2020, vol. 94, pp. 477–503.
M. Weiser, Y.M. Eggeler, E. Spiecker, and S. Virtanen: Corros. Sci., 2018, vol. 135, pp. 78–86.
S.M. Das, M.P. Singh, and K. Chattopadhyay: Corros. Sci., 2019, vol. 155, pp. 46–54.
H.-Y. Yan, V.A. Vorontsov, and D. Dye: Corros. Sci., 2014, vol. 83, pp. 382–95.
L. Klein, M.S. Killian, and S. Virtanen: Corros. Sci., 2013, vol. 69, pp. 43–9.
F. Fan, H. Sun, D. Zhao, and J.B. Sha: Effect of Mo on the High Temperature Oxidation Behavior of Co-Al-W Based Alloys, /MSF.747-748.754. Accessed 27 April 2020.
K.A. Christofidou, N.G. Jones, M.C. Hardy, and H.J. Stone: Oxid. Met., 2016, vol. 85, pp. 443–58.
T.L. Barth and E.A. Marquis: Oxid. Met., 2019, vol. 92, pp. 13–26.
S. Cruchley, H.E. Evans, M.P. Taylor, M.C. Hardy, and S. Stekovic: Corros. Sci., 2013, vol. 75, pp. 58–66.
S. Pedrazzini, B.S. Rowlands, A. Turk, I.M.D. Parr, M.C. Hardy, P.A.J. Bagot, M.P. Moody, E. Galindo-Nava, and H.J. Stone: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 3024–9.
G.P. Wagner and G. Simkovich: Oxid Met., 1986, vol. 26, pp. 139–55.
M.E. El-Dahshan: Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 25–34.
A Thermodynamic Database for Ni‐Base Superalloys—Dupin—2001—Scandinavian Journal of Metallurgy—Wiley Online Library, https://doi.org/10.1034/j.1600-0692.2001.300309.x. Accessed 24 March 2021.
T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, and K. Ishida: Intermetallics., 2013, vol. 32, pp. 274–83.
H. Long, S. Mao, Y. Liu, Z. Zhang, and X. Han: J. Alloy. Compd., 2018, vol. 743, pp. 203–20.
S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken: Acta Mater., 2016, vol. 106, pp. 304–12.
B. Chattopadhyay and G.C. Wood: Oxid. Met., 1970, vol. 2, pp. 373–99.
S. Cruchley, H. Evans, and M. Taylor: Mater. High Temp., 2016, vol. 33, pp. 465–75.
J.H. Chen, P.M. Rogers, and J.A. Little: Oxid. Met., 1997, vol. 47, pp. 381–410.
Isothermal oxidation behavior of Tribaloy TM T400 and T800 | npj Materials Degradation, https://www.nature.com/articles/s41529-018-0060-3. Accessed 25 July 2021.
F. Zhong, F. Fan, S. Li, and J. Sha: Prog. Nat. Sci., 2016, vol. 26, pp. 600–12.
M. Chen, B. Hallstedt, and L.J. Gauckler: JPE., 2003, vol. 24, pp. 212–27.
S.F. Frederick and I. Cornet: J. Electrochem. Soc., 1955, vol. 102, p. 285.
L. Klein, A. Bauer, S. Neumeier, M. Göken, and S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2027–34.
I. Bantounas, B. Gwalani, T. Alam, R. Banerjee, and D. Dye: Scripta Mater., 2019, vol. 163, pp. 44–50.
P.K. Kofstad and A.Z. Hed: J. Electrochem. Soc., 1969, vol. 116, p. 229.
P.K. Kofstad and A.Z. Hed: J. Electrochem. Soc., 1969, vol. 116, p. 224.
J. Östby and M. Chen: J. Alloy. Compd., 2009, vol. 485, pp. 427–34.
R.A. Rapp: Corrosion., 2013, vol. 21, pp. 382–401.
B.A. Pint and K.B. Alexander: J. Electrochem. Soc., 1998, vol. 145, p. 1819.
B.A. Pint, M. Treska, and L.W. Hobbs: Oxid. Met., 1997, vol. 47, pp. 1–20.
A. Sato, Y.-L. Chiu, and R.C. Reed: Acta Mater., 2011, vol. 59, pp. 225–40.
D.R. Glasson and S.A.A. Jayaweera: J. Appl. Chem., 1968, vol. 18, pp. 65–77.
Acknowledgments
The authors would like to acknowledge the microscopy facility available at the Advanced Facility for Microscopy and Microanalysis (AFMM) center, Indian Institute of Science, Bangalore. KC is grateful for the financial support from the Department of Science and Technology (DST) in the form of a SERB Distinguished Fellowship. KC also acknowledges the Gas Turbine Materials and Processes (GTMAP) program of the Aeronautics Research and Development Board, DRDO, Government of India for the financial support.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted April 27, 2021; accepted August 21, 2021.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Roy, A., Singh, M.P., Das, S.M. et al. Role of Ti on Phase Evolution, Oxidation and Nitridation of Co–30Ni–10Al–8Cr–5Mo–2Nb–(0, 2 & 4) Ti Cobalt Base Superalloys at Elevated Temperature. Metall Mater Trans A 52, 5004–5015 (2021). https://doi.org/10.1007/s11661-021-06445-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-021-06445-9