Skip to main content
Log in

Role of Ti on Phase Evolution, Oxidation and Nitridation of Co–30Ni–10Al–8Cr–5Mo–2Nb–(0, 2 & 4) Ti Cobalt Base Superalloys at Elevated Temperature

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Titanium is an important alloying addition to γ/γ′ cobalt-based superalloys that enhances the high temperature microstructural stability and make the alloys lighter. In this work, we probe the role of Ti composition on the phase stability and oxidation behavior of Co–30Ni–10Al–8Cr–5Mo–2Nb superalloys. With Ti addition, the γ′-solvus temperature is enhanced and the γ′-precipitate shape changes from spherical to rounded cuboids. Addition of 4 at. pct Ti to the alloy promotes topologically-close-packed (TCP) phase formation that are rich in Co, Cr, and Mo. During oxidation at 900 °C, Ti was found to facilitate the early formation of passivating oxide layers (spinel CoCr2O4/CoAl2O4) on the exposed surfaces, however, it was not effective in reducing the oxidation-induced mass gain. Microstructural analysis reveals that Ti delays the Al2O3 layer formation eventually leading to faster oxidation kinetics. Additionally, we also found formation of (Ti,Nb)N in the γ′ denuded zones near the alloy-oxide interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.S. Lee: PhD Thesis, The University of Arizona, 1971.

  2. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science., 2006, vol. 312, pp. 90–1.

    Article  CAS  Google Scholar 

  3. S.K. Makineni, B. Nithin, and K. Chattopadhyay: Scripta Mater., 2015, vol. 98, pp. 36–9.

    Article  CAS  Google Scholar 

  4. S.K. Makineni, B. Nithin, and K. Chattopadhyay: Acta Mater., 2015, vol. 85, pp. 85–94.

    Article  CAS  Google Scholar 

  5. S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee, and K. Chattopadhyay: Acta Mater., 2015, vol. 97, pp. 29–40.

    Article  CAS  Google Scholar 

  6. F.L. Reyes Tirado, J. Perrin Toinin, and D.C. Dunand: Acta Mater., 2018, vol. 151, pp. 137–48.

    Article  CAS  Google Scholar 

  7. Y. Chen, C. Wang, J. Ruan, S. Yang, T. Omori, R. Kainuma, K. Ishida, J. Han, Y. Lu, and X. Liu: Acta Mater., 2020, vol. 188, pp. 652–64.

    Article  CAS  Google Scholar 

  8. Y. Chen, C. Wang, J. Ruan, T. Omori, R. Kainuma, K. Ishida, and X. Liu: Acta Mater., 2019, vol. 170, pp. 62–74.

    Article  CAS  Google Scholar 

  9. M.P. Singh, S.K. Makineni, and K. Chattopadhyay: Mater. Sci. Eng. A., 2020, vol. 794, p. 139826.

    Article  CAS  Google Scholar 

  10. P. Pandey, S. Mukhopadhyay, C. Srivastava, S.K. Makineni, and K. Chattopadhyay: Mater. Sci. Eng. A., 2020, vol. 790, p. 139578.

    Article  CAS  Google Scholar 

  11. C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, and M. Göken: Acta Mater., 2017, vol. 135, pp. 244–51.

    Article  CAS  Google Scholar 

  12. J.J. Ruan, X.J. Liu, S.Y. Yang, W.W. Xu, T. Omori, T. Yang, B. Deng, H.X. Jiang, C.P. Wang, R. Kainuma, and K. Ishida: Intermetallics., 2018, vol. 92, pp. 126–32.

    Article  CAS  Google Scholar 

  13. H.J. Im, S.K. Makineni, B. Gault, F. Stein, D. Raabe, and P.-P. Choi: Scripta Mater., 2018, vol. 154, pp. 159–62.

    Article  CAS  Google Scholar 

  14. S.K. Makineni, M.P. Singh, and K. Chattopadhyay: Annu. Rev. Mater. Res., 2021, vol. 51, pp. 187–208.

    Article  CAS  Google Scholar 

  15. P. Pandey, S.K. Makineni, A. Samanta, A. Sharma, S.M. Das, B. Nithin, C. Srivastava, A.K. Singh, D. Raabe, B. Gault, and K. Chattopadhyay: Acta Mater., 2019, vol. 163, pp. 140–53.

    Article  CAS  Google Scholar 

  16. N. Baler, P. Pandey, M.P. Singh, S.K. Makineni, and K. Chatopadhyay: TMS, Superalloys, 2020.

  17. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Mater. Trans., 2008, vol. 49, pp. 1474–9.

    Article  CAS  Google Scholar 

  18. B. Gao, L. Wang, Y. Liu, X. Song, S.Y. Yang, and A. Chiba: Corros. Sci., 2019, vol. 157, pp. 109–15.

    Article  CAS  Google Scholar 

  19. C.A. Stewart, A. Suzuki, R.K. Rhein, T.M. Pollock, and C.G. Levi: Metall Mater. Trans. A., 2019, vol. 50A, pp. 5445–58.

    Article  CAS  Google Scholar 

  20. M. Weiser, M.C. Galetz, H.-E. Zschau, C.H. Zenk, S. Neumeier, M. Göken, and S. Virtanen: Corros. Sci., 2019, vol. 156, pp. 84–95.

    Article  CAS  Google Scholar 

  21. L. Klein, Y. Shen, M.S. Killian, and S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2713–20.

    Article  CAS  Google Scholar 

  22. S.M. Das, M.P. Singh, and K. Chattopadhyay: Corros. Sci., 2020, vol. 172, p. 108683.

    Article  CAS  Google Scholar 

  23. Y. Chen, F. Xue, C. Wang, X. Li, Q. Deng, X. Yang, H. Long, W. Li, L. Yang, and A. Li: Corros. Sci., 2019, vol. 161, p. 108179.

    Article  CAS  Google Scholar 

  24. D.-W. Chung, J.P. Toinin, E.A. Lass, D.N. Seidman, and D.C. Dunand: J. Alloys Compds., 2020, vol. 832, p. 154790.

    Article  CAS  Google Scholar 

  25. S. Mukhopadhyay, P. Pandey, N. Baler, K. Biswas, S.K. Makineni, and K. Chattopadhyay: Acta Mater., 2021, vol. 208, p. 116736.

    Article  CAS  Google Scholar 

  26. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, and D.N. Seidman: Mater. Sci. Eng. A., 2017, vol. 705, pp. 122–32.

    Article  CAS  Google Scholar 

  27. S.P. Hagen, M. Weiser, D. Kubacka, E. Spiecker, and S. Virtanen: Oxid Met., 2020, vol. 94, pp. 477–503.

    Article  CAS  Google Scholar 

  28. M. Weiser, Y.M. Eggeler, E. Spiecker, and S. Virtanen: Corros. Sci., 2018, vol. 135, pp. 78–86.

    Article  CAS  Google Scholar 

  29. S.M. Das, M.P. Singh, and K. Chattopadhyay: Corros. Sci., 2019, vol. 155, pp. 46–54.

    Article  CAS  Google Scholar 

  30. H.-Y. Yan, V.A. Vorontsov, and D. Dye: Corros. Sci., 2014, vol. 83, pp. 382–95.

    Article  CAS  Google Scholar 

  31. L. Klein, M.S. Killian, and S. Virtanen: Corros. Sci., 2013, vol. 69, pp. 43–9.

    Article  CAS  Google Scholar 

  32. F. Fan, H. Sun, D. Zhao, and J.B. Sha: Effect of Mo on the High Temperature Oxidation Behavior of Co-Al-W Based Alloys, /MSF.747-748.754. Accessed 27 April 2020.

  33. K.A. Christofidou, N.G. Jones, M.C. Hardy, and H.J. Stone: Oxid. Met., 2016, vol. 85, pp. 443–58.

    Article  CAS  Google Scholar 

  34. T.L. Barth and E.A. Marquis: Oxid. Met., 2019, vol. 92, pp. 13–26.

    Article  CAS  Google Scholar 

  35. S. Cruchley, H.E. Evans, M.P. Taylor, M.C. Hardy, and S. Stekovic: Corros. Sci., 2013, vol. 75, pp. 58–66.

    Article  CAS  Google Scholar 

  36. S. Pedrazzini, B.S. Rowlands, A. Turk, I.M.D. Parr, M.C. Hardy, P.A.J. Bagot, M.P. Moody, E. Galindo-Nava, and H.J. Stone: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 3024–9.

    Article  CAS  Google Scholar 

  37. G.P. Wagner and G. Simkovich: Oxid Met., 1986, vol. 26, pp. 139–55.

    Article  CAS  Google Scholar 

  38. M.E. El-Dahshan: Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 25–34.

    Article  CAS  Google Scholar 

  39. A Thermodynamic Database for Ni‐Base SuperalloysDupin—2001—Scandinavian Journal of Metallurgy—Wiley Online Library, https://doi.org/10.1034/j.1600-0692.2001.300309.x. Accessed 24 March 2021.

  40. T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, and K. Ishida: Intermetallics., 2013, vol. 32, pp. 274–83.

    Article  CAS  Google Scholar 

  41. H. Long, S. Mao, Y. Liu, Z. Zhang, and X. Han: J. Alloy. Compd., 2018, vol. 743, pp. 203–20.

    Article  CAS  Google Scholar 

  42. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken: Acta Mater., 2016, vol. 106, pp. 304–12.

    Article  CAS  Google Scholar 

  43. B. Chattopadhyay and G.C. Wood: Oxid. Met., 1970, vol. 2, pp. 373–99.

    Article  CAS  Google Scholar 

  44. S. Cruchley, H. Evans, and M. Taylor: Mater. High Temp., 2016, vol. 33, pp. 465–75.

    Article  CAS  Google Scholar 

  45. J.H. Chen, P.M. Rogers, and J.A. Little: Oxid. Met., 1997, vol. 47, pp. 381–410.

    Article  CAS  Google Scholar 

  46. Isothermal oxidation behavior of Tribaloy TM T400 and T800 | npj Materials Degradation, https://www.nature.com/articles/s41529-018-0060-3. Accessed 25 July 2021.

  47. F. Zhong, F. Fan, S. Li, and J. Sha: Prog. Nat. Sci., 2016, vol. 26, pp. 600–12.

    Article  CAS  Google Scholar 

  48. M. Chen, B. Hallstedt, and L.J. Gauckler: JPE., 2003, vol. 24, pp. 212–27.

    Article  CAS  Google Scholar 

  49. S.F. Frederick and I. Cornet: J. Electrochem. Soc., 1955, vol. 102, p. 285.

    Article  CAS  Google Scholar 

  50. L. Klein, A. Bauer, S. Neumeier, M. Göken, and S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2027–34.

    Article  CAS  Google Scholar 

  51. I. Bantounas, B. Gwalani, T. Alam, R. Banerjee, and D. Dye: Scripta Mater., 2019, vol. 163, pp. 44–50.

    Article  CAS  Google Scholar 

  52. P.K. Kofstad and A.Z. Hed: J. Electrochem. Soc., 1969, vol. 116, p. 229.

    Article  CAS  Google Scholar 

  53. P.K. Kofstad and A.Z. Hed: J. Electrochem. Soc., 1969, vol. 116, p. 224.

    Article  CAS  Google Scholar 

  54. J. Östby and M. Chen: J. Alloy. Compd., 2009, vol. 485, pp. 427–34.

    Article  CAS  Google Scholar 

  55. R.A. Rapp: Corrosion., 2013, vol. 21, pp. 382–401.

    Article  Google Scholar 

  56. B.A. Pint and K.B. Alexander: J. Electrochem. Soc., 1998, vol. 145, p. 1819.

    Article  CAS  Google Scholar 

  57. B.A. Pint, M. Treska, and L.W. Hobbs: Oxid. Met., 1997, vol. 47, pp. 1–20.

    Article  CAS  Google Scholar 

  58. A. Sato, Y.-L. Chiu, and R.C. Reed: Acta Mater., 2011, vol. 59, pp. 225–40.

    Article  CAS  Google Scholar 

  59. D.R. Glasson and S.A.A. Jayaweera: J. Appl. Chem., 1968, vol. 18, pp. 65–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the microscopy facility available at the Advanced Facility for Microscopy and Microanalysis (AFMM) center, Indian Institute of Science, Bangalore. KC is grateful for the financial support from the Department of Science and Technology (DST) in the form of a SERB Distinguished Fellowship. KC also acknowledges the Gas Turbine Materials and Processes (GTMAP) program of the Aeronautics Research and Development Board, DRDO, Government of India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahander Pratap Singh, Saurabh Mohan Das or Kamanio Chattopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 27, 2021; accepted August 21, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Singh, M.P., Das, S.M. et al. Role of Ti on Phase Evolution, Oxidation and Nitridation of Co–30Ni–10Al–8Cr–5Mo–2Nb–(0, 2 & 4) Ti Cobalt Base Superalloys at Elevated Temperature. Metall Mater Trans A 52, 5004–5015 (2021). https://doi.org/10.1007/s11661-021-06445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06445-9

Navigation