Skip to main content

Improving the Mechanical Properties and Wear Resistance of a Commercial Pearlitic Rail Steel Using a Two-Step Heat Treatment

Abstract

The possibility of improving the mechanical and wear performance of steel rails with conventional compositions, near-eutectoid and without special alloying elements, using a two-step heat treatment was investigated. The heat treatment involved a first step involving quenching to a low temperature, near the Ms, maintaining at this temperature for a short time, followed by a second step at higher temperatures until complete transformation. The microstructures, tensile, and wear properties of the obtained products were characterized. The dilatation data confirmed that the remaining austenite was completely eliminated by the bainitic transformation at 400 °C for only 300 seconds, in the absence of alloying elements such as silicon without formation of carbide precipitates. The refined bainite-ferrite microstructure obtained by the two-step heat treatment significantly increased mechanical properties, as well as wear resistance measured using tensile and pin-on-disk tests. The bainitic ferrite structure exhibited approximately 20 pct higher hardness and about 53 pct less mass loss on pin-on disk test than the as-received pearlitic sample. Dilatometric and microstructural analysis using EBSD-electron backscattered diffraction techniques provided evidence that the two-step heat treatment increased the nucleation rate of the bainitic transformation and shortened the incubation time for transformation at the second step, at the same time increasing the density of crystallographic defects such as dislocations and grains boundaries. The proposed heat treatment, besides improving the mechanical properties and wear resistance, avoids the technological difficulties of using molten salt or metal for isothermal heat treatment of long products as rails.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Notes

  1. 1.

    Bs (°C) = 830 -270C-90Mn-3Ni-70 Cr- 83Mo

    where C, Si, Mn, etc. represents the weight percentage (wt pct) of the alloying elements.

References

  1. 1.

    K. Holmberg and A. Erdemir: Friction., 2017, vol. 5, pp. 263–84.

    CAS  Article  Google Scholar 

  2. 2.

    J.M. Martin and A. Erdemir: Phys. Today., 2018, vol. 71, p. 3897.

    Article  Google Scholar 

  3. 3.

    R. Le Houillier, G. Bégin, and A. Dubé: Metall. Trans., 1971, vol. 2, pp. 2645–53.

    Article  Google Scholar 

  4. 4.

    B.P.J. Sandvik: Metall. Trans. A., 1982, vol. 13, pp. 789–800.

    CAS  Article  Google Scholar 

  5. 5.

    H.K.D.H.D.V.E. Bhadeshia: Met. Sci., 1983, 17, vol. 17.

  6. 6.

    US5879474A: 1999.

  7. 7.

    S. Das Bakshi: Wear of fine pearlite, nanostructured bainite and martensite. Doctoral thesis, 2017. https://doi.org/10.17863/CAM.7780.

  8. 8.

    J.E. Garnham: The Wear of Bainitic and Pearlitic Steels. Doctoral thesis, 1995. https://leicester.figshare.com/account/articles/10099568

  9. 9.

    Y. Hiroyasu, M. Shinji, Y. Sadahiro, K. Yuzuru, and S. Tooru: NKK Tech. Rev., 2001, pp. 44–51.

  10. 10.

    H.K.D.H. Bhadeshia: Encycl. Mater. Sci. Technol., 2002, pp. 1–7.

  11. 11.

    F. Pickering: in Steels Symposium, Climax Molybdenum Co. of Michigan/University of Michigan, 1967, pp. 109–32.

  12. 12.

    J. Kalousek, D.M. Fegredo, and E.E. Laufer: Wear., 1985, vol. 105, pp. 199–222.

    CAS  Article  Google Scholar 

  13. 13.

    R.K. Steele: Steel Alloys with Lower Bainite Microstructures for Use in Railroad Cars and Track, 2002.

  14. 14.

    F. Caballero, M. Miller, S. Babu, and C. Garcia-Mateo: Acta Mater., 2008, vol. 55, pp. 381–90.

    Article  CAS  Google Scholar 

  15. 15.

    H.K.D.H. Bhadeshia and D.V. Edmonds: Acta Metall., 1980, vol. 28, pp. 1265–73.

    CAS  Article  Google Scholar 

  16. 16.

    R. Voothaluru, V. Bedekar, D. Yu, Q. Xie, K. An, P. Pauskar, and R.S. Hyde: Metals (Basel)., 2019, vol. 9, pp. 1–23.

    Article  CAS  Google Scholar 

  17. 17.

    R.F. Hehemann: Metall. Trans., 1971, vol. 2, pp. 39–44.

    CAS  Article  Google Scholar 

  18. 18.

    V.W. Jellinghaus: Arch. für das Eisenhüttenwes., 1952, vol. 23, pp. 459–70.

    CAS  Article  Google Scholar 

  19. 19.

    R.T. Howard and M. Cohen: Trans. Metall. Soc. AIME., 1949, vol. 176, pp. 384–97.

    Google Scholar 

  20. 20.

    H. Okamoto and M. Oka: Metall. Trans. A., 1985, vol. 16, pp. 2257–62.

    Article  Google Scholar 

  21. 21.

    J. Zhao and Z. Jin: Mater. Sci. Technol., 1992, vol. 8, pp. 1004–10.

    CAS  Article  Google Scholar 

  22. 22.

    I.A. Yakubtsov and G.R. Purdy: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, vol. 43, pp. 437–46.

  23. 23.

    S.K. Putatunda: Mater. Sci. Eng. A., 2001, vol. 315, pp. 70–80.

    Article  Google Scholar 

  24. 24.

    J. Yang and S.K. Putatunda: Mater. Des., 2004, vol. 25, pp. 219–30.

    CAS  Article  Google Scholar 

  25. 25.

    K. Hase, C. Garcia-mateo, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 2006, vol. 438–440, pp. 145–8.

    Article  CAS  Google Scholar 

  26. 26.

    X. Wang, K. Wu, F. Hu, L. Yu, and X. Wan: Scr. Mater., 2014, vol. 74, pp. 56–9.

    CAS  Article  Google Scholar 

  27. 27.

    G. Gao, H. Guo, X. Gui, Z. Tan, and B. Bai: Mater. Sci. Eng. A., 2018, vol. 736, pp. 298–305.

    CAS  Article  Google Scholar 

  28. 28.

    H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    CAS  Article  Google Scholar 

  29. 29.

    M. Masoumi, E.A.A. Echeverri, A.P. Tschiptschin, and H. Goldenstein: Sci. Rep., 2019, vol. 9, p. 7454.

    Article  CAS  Google Scholar 

  30. 30.

    E.M. Bortoleto, A.C. Rovani, V. Seriacopi, F.J. Profito, D.C. Zachariadis, I.F. Machado, A. Sinatora, and R.M. Souza: Wear., 2013, vol. 301, pp. 19–26.

    CAS  Article  Google Scholar 

  31. 31.

    W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–56.

    CAS  Google Scholar 

  32. 32.

    M.J. Santofimia, F.G. Caballero, C. Capdevila, C. García-Mateo, and C. Garcia De Andrés: Mater. Trans., 2006, vol. 47, pp. 1492–500.

    CAS  Article  Google Scholar 

  33. 33.

    A.M. Ravi, J. Sietsma, and M.J. Santofimia: Scripta Mater., 2017, vol. 140, pp. 82–6.

    CAS  Article  Google Scholar 

  34. 34.

    S. Banerjee and P. Mukhopadhyay: Phase Trans., 2007, vol. 12, pp. 89–123.

    Article  Google Scholar 

  35. 35.

    S.F. Di Martino and G. Thewlis: Metall. Mater. Trans. A., 2014, vol. 45, p. 579.

    Article  CAS  Google Scholar 

  36. 36.

    M. Enomoto, S. Li, Z.N. Yang, C. Zhang, and Z.G. Yang: Calphad., 2018, vol. 61, pp. 116–25.

    CAS  Article  Google Scholar 

  37. 37.

    Wang, H. Yu, H. Gu, T. Zhou, and L. Wang: Mater. Sci. Eng. A., 2019, vol. 744, pp. 299–304.

    CAS  Article  Google Scholar 

  38. 38.

    G. Tressia, A. Sinatora, H. Goldenstein, and M. Masoumi: https://doi.org/10.1016/j.wear.2019.203122.

  39. 39.

    P.J. Blau: 2008, vol. 38, pp. 1007–12.

  40. 40.

    C.C. Viáfara and A. Sinatora: Wear., 2011, vol. 271, pp. 1689–700.

    Article  CAS  Google Scholar 

  41. 41.

    M. Suzuki and K.C. Ludema: J. Tribol., 1987, vol. 109, p. 587.

    CAS  Article  Google Scholar 

  42. 42.

    Y.Z. Hu, N. Li, and K. Tonder: J. Tribol., 1991, vol. 113, p. 499.

    Article  Google Scholar 

  43. 43.

    C.C. Viáfara and A. Sinatora: 2009, vol. 267, pp. 425–32.

  44. 44.

    S.S. Sahay, G. Mohapatra, and G.E. Totten: Adv. State Art Fire Test., 2010, vol. 36, pp. 692–792.

    Article  Google Scholar 

  45. 45.

    R. Stock and R. Pippan: Wear., 2011, vol. 271, pp. 125–33.

    CAS  Article  Google Scholar 

  46. 46.

    A. Królicka, K. Radwański, A. Ambroziak, and A. Żak: Mater. Sci. Eng. A., 2019, vol. 768, p. 138446.

    Article  CAS  Google Scholar 

  47. 47.

    C.C. Viáfara, M.I. Castro, J.M. Vélez, and A. Toro: Wear., 2005, vol. 259, pp. 405–11.

    Article  CAS  Google Scholar 

  48. 48.

    M. Masoumi, N.B. De Lima, G. Tressia, A. Sinatora, and H. Goldenstein: J. Mater. Res. Technol., 2019, vol. 8, pp. 6275–88.

    CAS  Article  Google Scholar 

  49. 49.

    Y. Chen, R. Ren, X. Zhao, C. Chen, and R. Pan: Wear., 2020, vol. 448–449, p. 203217.

    Article  CAS  Google Scholar 

  50. 50.

    X. Han, Z. Zhang, Y. Rong, S.J. Thrush, G.C. Barber, H. Yang, and F. Qiu: J. Mater. Res. Technol., 2019, vol. 9, pp. 1357–64.

    Article  CAS  Google Scholar 

  51. 51.

    W. Hirst and J.K. Lancaster: J. Appl. Phys., 1956, vol. 27, pp. 1057–65.

    Article  Google Scholar 

  52. 52.

    R.M. Farrell and T.S. Eyre: Wear., 1970, vol. 15, pp. 359–72.

    Article  Google Scholar 

  53. 53.

    B. Karnataka: Int. J. Eng. Res. Tech., 2012, vol. 1 pp. 1–7.

    Article  Google Scholar 

  54. 54.

    F.E. Kennedy: Wear, 1984, vol. 100, pp. 453–76. https://doi.org/10.1016/0043-1648(84)90026-7

    CAS  Article  Google Scholar 

  55. 55.

    N.C. Welsh: J. Appl. Phys., 1957, vol. 28, pp. 960–8.

    CAS  Article  Google Scholar 

  56. 56.

    Y. Chen, R. Ren, J. Pan, R. Pan, and X. Zhao: Wear., 2019, vol. 438–439, p. 203011.

    Article  CAS  Google Scholar 

  57. 57.

    Y. Zhou, J.L. Mo, Z.B. Cai, C.G. Deng, J.F. Peng, and M.H. Zhu: Tribol. Int., 2019, vol. 140, p. 105882.

    Article  Google Scholar 

  58. 58.

    Y. Zhou, J.F. Peng, Z.P. Luo, B.B. Cao, X.S. Jin, and M.H. Zhu: Wear., 2016, vol. 362–363, pp. 8–17.

    Article  CAS  Google Scholar 

  59. 59.

    H.W. Zhang, S. Ohsaki, S. Mitao, M. Ohnuma, and K. Hono: Mater. Sci. Eng. A., 2006, vol. 421, pp. 191–9.

    Article  CAS  Google Scholar 

  60. 60.

    H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A., 1990, vol. 21, pp. 767–97.

    Article  Google Scholar 

  61. 61.

    S.M.C. Van Bohemen and J. Sietsma: Int. J. Mater. Res., 2008, vol. 99, pp. 739–47.

    Article  Google Scholar 

  62. 62.

    E.A. Ariza-Echeverri, M. Masoumi, A.S. Nishikawa, D.H. Mesa, A.E. Marquez-Rossy, and A.P. Tschiptschin: Mater. Des., 2020, vol. 186, p. 108329.

    CAS  Article  Google Scholar 

  63. 63.

    E.A. Ariza, J. Poplawsky, W.E.I. Guo, P. Tschiptschin, K. Unocic, and A.J. Ramirez: Metall. Mater. Trans. A., 2018, vol. 49, pp. 4809–23.

    CAS  Article  Google Scholar 

  64. 64.

    M. Masoumi, H.F.G. Abreu, L.F.G. Herculano, J.M. Pardal, S.S.M. Tavares, and M.J.G. Silva: Eng. Fail. Anal., 2019, vol. 104, pp. 379–87.

    CAS  Article  Google Scholar 

  65. 65.

    M.N. Yoozbashi, Yazdani, and T.S. Wang: Mater. Des., 2011, vol. 32, pp. 3248–53.

    CAS  Article  Google Scholar 

  66. 66.

    X. Long, F. Zhang, Z. Yang, and M. Zang: Materials (Basel)., 2019, vol. 12, p. 1534.

    CAS  Article  Google Scholar 

  67. 67.

    G. Chen, G. Xu, H.S. Zurob, and H. Hu: Metall. Mater. Trans. A., 2019, vol. 50, pp. 573–80.

    CAS  Article  Google Scholar 

  68. 68.

    J. Lu, H. Yu, X. Duan, and C. Song: Mater. Sci. Eng. A., 2020, vol. 774, p. 138868.

    CAS  Article  Google Scholar 

  69. 69.

    L.M. Rivas: National Center for Metallurgical Research (CENIM-CSIC), 2016.

  70. 70.

    X. Gan, X. Wan, Y. Zhang, H. Wang, G. Li, G. Xu, and K. Wu: Mater. Charact., 2019, vol. 157, p. 109893.

    CAS  Article  Google Scholar 

  71. 71.

    H.K.D.H. Bhadeshia: Bainite in Steels Theory and Practice. 3rd ed. Maney Publishing, Leeds, 2001.

    Google Scholar 

  72. 72.

    G. Mingfei and Y.U. Hao: Sci. China Technol. Sci., 2012, vol. 56, pp. 71–79. https://doi.org/10.1007/s11431-012-5047-7

    CAS  Article  Google Scholar 

  73. 73.

    S. Zaefferer, P. Romano, and F. Friedel: J. Microsc., 2008, vol. 230, pp. 499–508.

    CAS  Article  Google Scholar 

  74. 74.

    D. Song, J. Hao, F. Yang, H. Chen, N. Liang, Y. Wu, J. Zhang, H. Ma, E. Eyram, B. Gao, Y. Qiao, J. Sun, and J. Jiang: J. Alloys Compd., 2019, vol. 809, p. 151787.

    CAS  Article  Google Scholar 

  75. 75.

    R. Kannan, Y. Wang, M. Nouri, D. Li, and L. Li: Mater. Sci. Eng. A., 2018, vol. 713, pp. 1–6.

    CAS  Article  Google Scholar 

  76. 76.

    I. Hutchings and P. Shipway: Tribology: Friction and Wear of Engineering Materials. 2nd ed. Butterworth-Heinemann, Oxford, 2017.

    Google Scholar 

  77. 77.

    F.G. Caballero, M.K. Miller, and C. Garcia-Mateo: Mater. Chem. Phys., 2014, vol. 146, pp. 50–7.

    CAS  Article  Google Scholar 

  78. 78.

    D. Sun, C. Liu, X. Long, X. Zhao, Y. Li, B. Lv, F. Zhang, and Z. Yang: Mater. Sci. Eng. A., 2021, vol. 811, p. 141055.

    CAS  Article  Google Scholar 

  79. 79.

    A.B. Rezende, T. Fonseca, F.M. Fernandes, R.S. Miranda, F.A.F. Grijalba, P.F.S. Farina, and P.R. Mei: Wear., 2020, vol. 456–457, p. 203377.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support offered by CNPq and Vale S.A.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masoumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 11 March 2021; accepted 8 August 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masoumi, M., Tressia, G., Centeno, D.M.A. et al. Improving the Mechanical Properties and Wear Resistance of a Commercial Pearlitic Rail Steel Using a Two-Step Heat Treatment. Metall Mater Trans A 52, 4888–4906 (2021). https://doi.org/10.1007/s11661-021-06432-0

Download citation