Skip to main content
Log in

The Defining Role of Plastic Deformation on Resistance to Aqueous Corrosion of Interstitial Free Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thirty-five ‘apparently’ recrystallized specimens were produced through a combination of cold rolling and recrystallization annealing. They had a range of average grain size (dav:18-467 μm), grain orientation spread (GOS: 0.31 to 1.24 deg) and volume fraction of ND||<111> (\({V}_{f}^{ND||<111>}\): 0.15-0.69). The GOS value, for individual grains or for an entire specimen, represented presence of ‘remnant’ cold work – existence of geometrically necessary dislocations and ‘minor’ orientation gradients. The resistance to aqueous corrosion was determined by this ‘remnant’ cold work, and not by average grain size or crystallographic texture. The role of mesoscopic distribution in plastic deformation, and the features of deformed microstructure, were then explored on the resistance to aqueous corrosion. Progressive plastic deformation, through laboratory cold rolling, brought reproducible non-monotonic corrosion responses. In particular, an increase in corrosion resistance (0 to 30 pct rolled) was followed by a drop (30-40 pct) and then an increase (> 40 pct rolling). These changes originated from the evolution in deformed microstructures: formation of near boundary orientation gradients and creation of low and high angle boundaries, respectively. A combination of microtexture and non-contact profilometry clearly established that deformation induced near boundary orientation gradients and grain-interior high angle grain boundaries provided resistance to aqueous corrosion, while low angle boundaries were detrimental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials. Elsevier, Amsterdam, 2007.

    Google Scholar 

  2. D. Dwivedi, K. Lepková, and T. Becker: RSC Adv., 2017, vol. 7, pp. 4580–610. .

    Article  CAS  Google Scholar 

  3. W.B. Hutchinson: Int. Met. Rev., 1984, vol. 29, pp. 25–40. .

    Article  CAS  Google Scholar 

  4. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Re., 1994, vol. 39, pp. 129–72. .

    Article  CAS  Google Scholar 

  5. S. Hoile: Mater. Sci. Technol., 2000, vol. 16, pp. 1079–93. .

    Article  CAS  Google Scholar 

  6. I. Samajdar, B. Verlinden, and P. Van Houtte: Acta Mater., 1998, vol. 46, pp. 2751–63. .

    Article  CAS  Google Scholar 

  7. I. Samajdar, B. Verlinden, L. Kestens, and P. Van Houtte: Acta Mater., 1998, vol. 47, pp. 55–65. .

    Article  Google Scholar 

  8. R. Khatirkar, B. Vadavadagi, A. Haldar, and I. Samajdar: ISIJ Int., 2012, vol. 52, pp. 894–901. .

    Article  CAS  Google Scholar 

  9. Y. Ma, Y. Li, and F. Wang: Corros. Sci., 2010, vol. 52, pp. 1796–800. .

    Article  CAS  Google Scholar 

  10. I.I. Reformatskaya, I.G. Rodionova, Y.A. Bejlin, L.A. Nisel’son, and A.N. Podobaev: Zashchita Met., 2004, vol. 40, pp. 498–504. .

    Google Scholar 

  11. C.S. Brossia and G.A. Cragnolino: Corrosion., 2000, vol. 56, pp. 505–14. .

    Article  CAS  Google Scholar 

  12. K.D. Ralston and N. Birbilis: Corrosion., 2010, vol. 66, pp. 0750051–07500513. .

    Article  Google Scholar 

  13. K.D. Ralston, N. Birbilis, and C.H.J. Davies: Scr. Mater., 2010, vol. 63, pp. 1201–4. .

    Article  CAS  Google Scholar 

  14. K.D. Ralston, D. Fabijanic, and N. Birbilis: Electrochim. Acta., 2011, vol. 56, pp. 1729–36. .

    Article  CAS  Google Scholar 

  15. Y. Li, F. Wang, and G. Liu: Corrosion., 2004, vol. 60, pp. 891–6. .

    Article  CAS  Google Scholar 

  16. C. Lei, X. Chen, Y. Li, Y. Chen, and B. Yang: Metals., 2019, vol. 9, pp. 872–83. .

    Article  CAS  Google Scholar 

  17. B. Hadzima, M. Janeček, Y. Estrin, and H.S. Kim: Mater. Sci. Eng. A., 2007, vol. 462, pp. 243–7. .

    Article  CAS  Google Scholar 

  18. G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1961–74. .

    Article  CAS  Google Scholar 

  19. W.D.J. France: Corrosion., 1970, vol. 26, pp. 189–99. .

    Article  CAS  Google Scholar 

  20. J. Jelinek, P. Neufeldt, and G.A. Pickup: Br. Corros. J., 1978, vol. 13, pp. 112–7. .

    Article  CAS  Google Scholar 

  21. N.D. Greene and G.A. Saltzman: Corrosion., 1964, vol. 20, pp. 293–8. .

    Article  Google Scholar 

  22. Y.S. Zhang and X.M. Zhu: Corros. Sci., 1999, vol. 41, pp. 1817–33. .

    Article  CAS  Google Scholar 

  23. S.A. Al-Duheisat and A.S. El-Amoush: Mater. Des., 2016, vol. 89, pp. 342–7. .

    Article  CAS  Google Scholar 

  24. Z.A. Foroulis and H.H. Uhlig: J. Electrochem. Soc., 1964, vol. 111, p. 522. .

    Article  CAS  Google Scholar 

  25. R. Mondal, S.K. Bonagani, A. Lodh, T. Sharma, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: Corrosion., 2019, vol. 75, pp. 1315–26. .

    Article  CAS  Google Scholar 

  26. R. Mondal, A. Rajagopal, S.K. Bonagani, A. Prakash, D. Fuloria, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: Metall. Mater. Trans. A., 2020, vol. 51, pp. 2480–94. .

    Article  CAS  Google Scholar 

  27. R. Mondal, S. Kumar Bonagani, P. Raut, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: J. Electrochem. Soc., 2020, vol. 167, p. 101501. .

    Article  CAS  Google Scholar 

  28. B.T. Lu, H. Yu, and J.L. Luo: J. Mater. Eng. Perform., 2013, vol. 22, pp. 1430–5. .

    Article  CAS  Google Scholar 

  29. C. Montero-Ocampo and L. Veleva: Corrosion., 2002, vol. 58, pp. 601–7. .

    Article  CAS  Google Scholar 

  30. R. Rana, S.B. Singh, and O.N. Mohanty: Corros. Eng. Sci. Technol., 2011, vol. 46, pp. 517–20. .

    Article  CAS  Google Scholar 

  31. I. Samusawa and S. Nakayama: Corros. Sci., 2019, vol. 159, p. 108122. .

    Article  CAS  Google Scholar 

  32. I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Mater. Sci. Eng. A., 1997, vol. 238, pp. 343–50. .

    Article  Google Scholar 

  33. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 697–705. .

    Article  CAS  Google Scholar 

  34. G.H. Akbari and C.M. Sellars: Acta Metall., 1997, vol. 45, pp. 5047–58. .

    CAS  Google Scholar 

  35. V.M. Nandedkar, I. Samajdar, and K. Narasimhan: ISIJ Int., 2001, vol. 41, pp. 1517–23. .

    Article  CAS  Google Scholar 

  36. B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, pp. 1069–81. .

    Article  CAS  Google Scholar 

  37. R. Khatirkar, K.V. Mani Krishna, L.A.I. Kestens, R.H. Petrov, P. Pant, and I. Samajdar: Mater. Sci. Forum., 2011, vol. 702–703, pp. 782–5. .

    Article  CAS  Google Scholar 

  38. I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Scr. Mater., 1997, vol. 37, pp. 869–74. .

    Article  CAS  Google Scholar 

  39. M. Pourbaix: Corros. Sci., 1974, vol. 14, pp. 25–82. .

    Article  CAS  Google Scholar 

  40. N. Perez: Electrochemistry and corrosion science. vol. 412, Kluwer Academic Publishers, Boston, 2004.

    Book  Google Scholar 

  41. ASTM NACE Standard, G31-12a, Standard Guide for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, PA, 2012

  42. P. Pearson and A. Cousins: Assessment of Corrosion Inamine-Based Post-Combustion Capture of Carbon Dioxide Systems. Elsevier, Amsterdam, 2016.

    Google Scholar 

  43. I. Saunders: Anti-Corros. Methods Mater., 1996, vol. 43, pp. 21–5. .

    Article  CAS  Google Scholar 

  44. ASTM Standard G59-97 (Reapproved 2014) Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International (West Conshohocken, PA, USA (2014).

  45. ASTM Standard G106 − 89 (Reapproved 2015) Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements. ASTM International (West Conshohocken, PA, USA 2015).

  46. J.R. Macdonald and E. Barsoukov: Impedance spectroscopy: theory, experiment, and applications. 2nd ed. Wiley, Hoboken, 2005, pp. 1–13.

    Book  Google Scholar 

  47. ASTM Standard G102 − 89 (Reapproved 1994) Standard Practice for Calculation of Corrosion Rate and related Information from Electrochemical Measurements. ASTM International (West Conshohocken, PA, USA, 1989).

  48. N. Srinivasan, V. Kain, N. Birbilis, K.V. Mani Krishna, S. Shekhawat, and I. Samajdar: Corros. Sci., 2015, vol. 100, pp. 544–55. .

    Article  CAS  Google Scholar 

  49. M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, and A.D. Rollett: Acta Mater., 2008, vol. 56, pp. 3098–108. .

    Article  CAS  Google Scholar 

  50. S. Raveendra, S. Mishra, K.V. Mani Krishna, H. Weiland, and I. Samajdar: Metall. Mater. Trans. A., 2008, vol. 39, pp. 2760–71. .

    Article  CAS  Google Scholar 

  51. D. Raabe, Z. Zhao, S.J. Park, and F. Roters: Acta Mater., 2002, vol. 50, pp. 421–40. .

    Article  CAS  Google Scholar 

  52. L.S. Tóth, Y. Estrin, R. Lapovok, and C. Gu: Acta Mater., 2010, vol. 58, pp. 1782–94. .

    Article  CAS  Google Scholar 

  53. S.K. Mishra, P. Pant, K. Narasimhan, A.D. Rollett, and I. Samajdar: Scr. Mater., 2009, vol. 61, pp. 273–6. .

    Article  CAS  Google Scholar 

  54. N. Keskar, S. Mukherjee, K.V. Mani Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty, and I. Samajdar: Acta Mater., 2014, vol. 69, pp. 265–74. .

    Article  CAS  Google Scholar 

  55. A. Schreiber, J.W. Schultze, M.M. Lohrengel, F. Kármán, and E. Kálmán: Electrochim. Acta., 2006, vol. 51, pp. 2625–30. .

    Article  CAS  Google Scholar 

  56. M.T. Simnad and U.R. Evans: Trans. Faraday Soc., 1950, vol. 46, pp. 175–86. .

    Article  CAS  Google Scholar 

  57. Z.A. Foroulis: Corros. Sci., 1965, vol. 5, pp. 39–46. .

    Article  CAS  Google Scholar 

  58. Z.A. Foroulis: J. Electrochem. Soc., 1966, vol. 113, pp. 532–6. .

    Article  CAS  Google Scholar 

  59. S.G. Wang, C.B. Shen, K. Long, T. Zhang, F.H. Wang, and Z.D. Zhang: J. Phys. Chem. B., 2006, vol. 110, pp. 377–82. .

    Article  CAS  Google Scholar 

  60. G. Ma, G. Wu, W. Shi, S. Xiang, Q. Chen, and X. Mao: Corros. Sci., 2020, vol. 176, pp. 1–10. .

    Article  CAS  Google Scholar 

  61. T. Yamamoto, K. Fushimi, S. Miura, and H. Konno: J. Electrochem. Soc., 2010, vol. 157, p. C231. .

    Article  CAS  Google Scholar 

  62. G.I. Taylor: J. Inst. Met., 1938, vol. 62, p. 62. .

    Google Scholar 

  63. J.P. Hirth: Metall. Trans. A., 1985, vol. 16, pp. 2085–90. .

    Article  Google Scholar 

  64. J. Galán-López and L.A.I. Kestens: Metall. Mater. Trans. A., 2018, vol. 49, pp. 5745–62. .

    Article  CAS  Google Scholar 

  65. D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1982, vol. 30, pp. 1087–119. .

    Article  CAS  Google Scholar 

  66. A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin, and H.W. Erbsloh: Acta Metall., 1986, vol. 34, pp. 1999–2009. .

    Article  CAS  Google Scholar 

  67. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19. .

    Article  CAS  Google Scholar 

  68. N. Zhang and W. Tong: Int. J. Plast., 2004, vol. 20, pp. 523–42. .

    Article  CAS  Google Scholar 

  69. S.K. Mishra, S.G. Desai, P. Pant, K. Narasimhan, and I. Samajdar: Int. J. Mater. Form., 2009, vol. 2, pp. 59–67. .

    Article  Google Scholar 

  70. E. Aernoudt, P. Van Houtte, T. Leffers. "Plastic Deformation and Fracture of Materials, ed. by H. Mughrabi, (Vol. 6 of Materials Science and Technology: A comprehensive trea™ent, ed. by RW Cahn, P. Haasen and EJ Kramer)." (1993) p. 89–136.

Download references

Acknowledgment

The authors would like to acknowledge financial and technical support from CoEST (Centre of Excellence in Steel Technology, IIT Bombay). Supply of the material from Tata Steel, and microstructure measurements at the National Facility of Texture and OIM (IIT Bombay) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 26 January 2021; accepted 23 July 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Prakash, A., Mehtani, H.K. et al. The Defining Role of Plastic Deformation on Resistance to Aqueous Corrosion of Interstitial Free Steel. Metall Mater Trans A 52, 4597–4608 (2021). https://doi.org/10.1007/s11661-021-06412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06412-4

Navigation