Skip to main content
Log in

Laser Alloying as an Effective Way to Fabricate NiTiPt Shape Memory Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation of NiTiPt high-temperature shape memory alloy was examined using laser alloying of NiTi and PtIr alloys. In this regard, four different peak powers were implemented to study their effects on NiTiPt laser-fabricated materials. The lowest (1.0 kW) and highest (2.5 kW) peak powers were disregarded due to the lack of bonding and significant crack formation in the sample, respectively. The NiTiPt phase was successfully formed using the intermediary peak powers due to laser alloying. At a lower peak laser power (1.5 kW), the ternary NiTiPt alloy had a chemical composition that varied from less than 5at. pct to than 30at. pct Pt. At a higher peak power (2.0 kW), a more homogenous material was achieved with slightly higher than 30at. pct Pt. B2 and B19 phases of NiTiPt and various other binary phases were characterized inside the mixed zone (MZ), which were highly dependent on the Pt content of the fabricated NiTiPt. The variation of the chemical composition and formation of different phases resulted in the inhomogeneity of microhardness values in the low-power sample, whereas the high-power sample showed homogenous microhardness values within the mixed zone. The formation of the NiTiPt alloy was inferred from the presence of nanoscale p-phase precipitates which is the main characteristic of NiTiPt alloys, as characterized by Transmission Electron Microscopy (TEM) and Selected Area Diffraction (SAD) patterns. Finally, it was observed that the phase formed inside the mixed zone shifted the critical transformation temperature more than 200°C which also indicates that a high-temperature shape memory alloy was successfully fabricated. This study may open the door for fabricating high-temperature shape memory alloys using laser alloying.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1 K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.

    Article  CAS  Google Scholar 

  2. 2 M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri: Prog. Mater. Sci., 2012, vol. 57, pp. 911–46.

    Article  CAS  Google Scholar 

  3. J. MohdJani, M. Leary, A. Subic, and M.A. Gibson: Mater. Des., 2014, vol. 56, pp. 1078–113.

    Article  CAS  Google Scholar 

  4. M. Mehrpouya and H. CheraghiBidsorkhi: Micro Nanosyst., 2016, vol. 8, pp. 79–91.

    Article  CAS  Google Scholar 

  5. D.J. Hartl and D.C. Lagoudas (2007) Proc. Inst. Mech. Eng. Part G 221:535–52.

    Article  CAS  Google Scholar 

  6. 6 M. Moshref-Javadi, M. Belbasi, S.H. Seyedein, and M.T. Salehi: J. Mater. Sci. Technol., 2014, vol. 30, pp. 280–4.

    Article  CAS  Google Scholar 

  7. 7 D. Chovan, A. Gandhi, J. Butler, and S.A.M. Tofail: J. Magn. Magn. Mater., 2018, vol. 452, pp. 451–7.

    Article  CAS  Google Scholar 

  8. 8 D. Stoeckel, A. Pelton, and T. Duerig: Eur. Radiol., 2004, vol. 14, pp. 292–301.

    Article  Google Scholar 

  9. 9 D. Chovan, M. Nolan, and S.A.M. Tofail: J. Alloys Compd., 2015, vol. 630, pp. 54–9.

    Article  CAS  Google Scholar 

  10. T.E. Buchheit, D.F. Susan, J.E. Massad, J.R. McElhanon, and R.D. Noebe: Metall. Mater. Trans. A 2016, vol. 47, pp. 1587–99.

    Article  Google Scholar 

  11. 11 A.C. Coppa, M. Kapoor, R. Noebe, and G.B. Thompson: Intermetallics, 2015, vol. 67, pp. 56–62.

    Article  CAS  Google Scholar 

  12. 12 K. V. Ramaiah, C.N. Saikrishna, M. Sujata, M. Madan, and S.K. Bhaumik: ISSS J. Micro Smart Syst., 2019, vol. 8, pp. 81–8.

    Article  Google Scholar 

  13. 13 Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M.J. Mills, and Y. Wang: Acta Mater., 2012, vol. 60, pp. 1514–27.

    Article  CAS  Google Scholar 

  14. O. Rios, R. Noebe, T. Biles, A. Garg, A. Palczer, D. Scheiman, H.J. Seifert, and M. Kaufman: Smart Struct. Mater. Act. Mater. Behav. Mech., 2005, vol. 5761, p. 376.

    CAS  Google Scholar 

  15. L. Odonoghue, A.A. Gandhi, J. Butler, W. Redington, P. Tiernan, T. Mcloughlin, J.C. Carlson, S. Lavelle, and S.A.M. Tofail (2010) Nucl. Instrum. Methods Phys. Res. Sect. B 268:287–90.

    Article  Google Scholar 

  16. 16 O. Benafan, D.J. Gaydosh, R.D. Noebe, S. Qiu, and R. Vaidyanathan: Shape Mem. Superelasticity, 2016, vol. 2, pp. 337–46.

    Article  Google Scholar 

  17. B. Panton, A. Pequegnat, and Y.N. Zhou: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3533–44.

    Article  Google Scholar 

  18. J.P. Oliveira, R.M. Miranda, and F.M. BrazFernandes: Prog. Mater. Sci., 2017, vol. 88, pp. 412–66.

    Article  CAS  Google Scholar 

  19. 19 M. Mehrpouya, A. Gisario, and M. Elahinia: J. Manuf. Process., 2018, vol. 31, pp. 162–86.

    Article  Google Scholar 

  20. A. Shamsolhodaei, J.P. Oliveira, N. Schell, E. Maawad, B. Panton, and Y.N. Zhou (2019) Intermetallics. https://doi.org/10.1016/j.intermet.2019.106656

    Article  Google Scholar 

  21. 21 N.J. Noolu, H.W. Kerr, Y. Zhou, and J. Xie: Mater. Sci. Eng. A, 2005, vol. 397, pp. 8–15.

    Article  Google Scholar 

  22. 22 Y. Yamabe-Mitarai, T. Aoyagi, and T. Abe: J. Alloys Compd., 2009, vol. 484, pp. 327–34.

    Article  CAS  Google Scholar 

  23. 23 S. Datta, M.S. Raza, P. Saha, D.K. Pratihar, and S. Datta: Mater. Manuf. Process., 2019, vol. 00, pp. 1–12.

    Google Scholar 

  24. K.C. Mills, B.J. Keene, R.F. Brooks, and A. Shirali: Philos. Trans. R. Soc. A 1998, vol. 356, pp. 911–25.

    Article  CAS  Google Scholar 

  25. 25 B. Lin, K. Gall, H.J. Maier, and R. Waldron: Acta Biomater., 2009, vol. 5, pp. 257–67.

    Article  CAS  Google Scholar 

  26. 26 R. Indhu, S. Soundarapandian, and L. Vijayaraghavan: J. Mater. Process. Technol., 2018, vol. 262, pp. 411–21.

    Article  Google Scholar 

  27. 27 L. Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R.D. Noebe, and M.J. Mills: Acta Mater., 2010, vol. 58, pp. 4660–73.

    Article  CAS  Google Scholar 

  28. 28 F. Yang, R.D. Noebe, and M.J. Mills: Scr. Mater., 2013, vol. 69, pp. 713–5.

    Article  CAS  Google Scholar 

  29. 29 O. Benafan, D.J. Gaydosh, R.D. Noebe, S. Qiu, and R. Vaidyanathan: Shape Mem. Superelasticity, 2016, vol. 2, pp. 337–46.

    Article  Google Scholar 

  30. 30 M.I. Khan, A. Pequegnat, and Y.N. Zhou: Adv. Eng. Mater., 2013, vol. 15, pp. 386–93.

    Article  CAS  Google Scholar 

  31. 31 A. Shamsolhodaei, Y.N. Zhou, and A. Michael: Sci. Technol. Weld. Join., 2019, vol. 24, pp. 706–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of NSERC (Natural Science and Engineering Research Council) in Canada and Canada Research Chairs (CRC). The authors also wish to thank Hui Yuan and Carmen Andrei in the Canadian Center for Electron Microscopy (CCEM) at McMaster University for their technical support with the FIB and TEM. The CCEM is a National Facility supported by NSERC and McMaster University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shamsolhodaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 9, 2021; accepted July 7, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsolhodaei, A., Panton, B., Michael, A. et al. Laser Alloying as an Effective Way to Fabricate NiTiPt Shape Memory Alloys. Metall Mater Trans A 52, 4368–4378 (2021). https://doi.org/10.1007/s11661-021-06389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06389-0

Navigation