Skip to main content

Advertisement

Log in

Machine Learning Model for Thickness Evolution of Oxide Scale During Hot Strip Rolling of Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide scales have significant influences on the surface qualities of hot-rolled steels. In the present work, an oxidation kinetic model for anisothermal conditions was employed with the aim of accurately controlling the evolution of scales during hot rolling, which could describe the evolution of scale thickness throughout hot rolling processes based on the scale growth behaviors at different stages, including reheating, rolling, and descaling. To improve the accuracy of the modeling, machine learning with the backpropagation artificial neural network (BPNN) and support vector machine (SVM) was used to calculate the values of oxidation rates and scale deformation ratios, and genetic algorithm (GA) was employed to optimize the model parameters. The modeling demonstrated high accuracy in predicting the evolution of scale thickness in hot rolling by comparing with the measured scale thicknesses. Based on the accurate predictions, the effects of steel compositions, rolling, and descaling processing parameters on scale growth behavior were analyzed, which presents the solution to working out the optimal processing windows for scale control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. [1] R. Y. Chen and W. Y. D. Yuen: Oxid. Met., 2001, vol. 56, pp. 89-118.

    Article  CAS  Google Scholar 

  2. [2] W. Sun, A. K. Tieu, Z. Jiang, H. Zhu, and C. Lu: J. Mater. Process. Technol., 2004, vol.155-156, pp. 1300-06.

    Article  Google Scholar 

  3. [3] A. Chattopadhyay, N. Bandyopadhyay, A. K. Das, and M. K. Panigrahi: Scripta Mater., 2005, vol. 52, pp. 211-15.

    Article  CAS  Google Scholar 

  4. [4] P. Wikstrom, W. Yang, and W. Blaslak: Steel Res. Int., 2008, vol. 10, pp. 765-75.

    Article  Google Scholar 

  5. [5] J. H. Jang, D. E. Lee, M. Y. Kim, and H. G. Kim: Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 4326-32.

    Article  CAS  Google Scholar 

  6. M. Y. Kim: Int. J. Mech. Aerosp. Indus. Mechatron. Eng., 2013, vol. 7, pp. 1337–41.

    Google Scholar 

  7. [7] S. K. Dubey, and P. Srinivasan: Int. J. Therm. Sci.,2014, vol. 84, pp. 214-27.

    Article  CAS  Google Scholar 

  8. [8] S. K. Dubey, and P. Srinivasan: J. Mech. Sci. Technol, 2014, vol. 28, pp. 1113-24.

    Article  Google Scholar 

  9. [9] X. Liu, B. Worl, G. Tang, A. K. Silaen, J. Cox, K. Johnson, R. Bodnar, and C. Q Zhou: Steel Res. Int., 2019, vol. 90, pp. 1800385.

    Article  Google Scholar 

  10. [10] M. Torres, R. Colás: J. Mater. Process. Technol., 2000, vol. 105, pp. 258-63.

    Article  Google Scholar 

  11. [11] K. Schwerdtfeger, and S. X. Zhou: Steel Res. Int, 2003, vol. 74, pp. 538-46.

    Article  CAS  Google Scholar 

  12. [12] S. X. Zhou, G. Liu, and Y. Cao: Steel Res. Int., 2006, vol. 77, pp. 336-41.

    Article  CAS  Google Scholar 

  13. [13] S. X. Zhou: J. Mater. Process. Technol., 2003, vol. 134, pp. 338-51.

    Article  CAS  Google Scholar 

  14. [14] L. Suárez, Y. Houbaert, X.V. Eynde, and R. Colás: Corros. Sci., 2009, vol. 51, pp. 309-15.

    Article  Google Scholar 

  15. D. Filatov, O. Pawelski, and W. Rasp: Steel Res. Int., 2004, vol. 75, pp. 20-25.

    Article  CAS  Google Scholar 

  16. [16] A. Rahnama, S. Clark, and S. Sridhar: Comput. Mater. Sci., 2018, vol. 154, pp. 169-77.

    Article  CAS  Google Scholar 

  17. [17] A. Brahme, M. Winning, and D. Raabe: Comput. Mater. Sci., 2009, vol. 46, pp. 800-04.

    Article  CAS  Google Scholar 

  18. [18] Y. Lv, J. Wang, J. Wang, C. Xiong, L. Zou, L. Li, and D. Li: Chaos, Solitons Fractals, 2020, vol. 136, pp. 109807.

    Article  Google Scholar 

  19. [19] S. M. K. Hosseini, A. Z. Hanzaki, M. J. Y. Panah, S. Yue: Mat. Sci. Eng., 2004, vol. 374, pp. 122-28.

    Article  Google Scholar 

  20. [20] O. Palavar, D. Özyürek, and A. Kalyon: Mater. Des., 2015, vol. 82, pp. 164-72.

    Article  CAS  Google Scholar 

  21. [21] M. Younesi, M. E. Bahrololoom, and M. Ahmadzadeh: Comput. Mater. Sci., 2010, vol. 47: pp. 645-54.

    Article  CAS  Google Scholar 

  22. [22] S. Guo, J. Yu, X. Liu, C. Wang, and Q. Jiang: Comput. Mater. Sci., 2019, vol. 160, pp. 95-104.

    Article  CAS  Google Scholar 

  23. [23] C. Wagner: Z. Phys. Chem., 1933, vol. 21, pp. 25-41.

    Article  Google Scholar 

  24. [24] Z. Liu, W. Gao: High Temp. Mater. Process., 1998, vol. 17, pp. 231-36.

    Article  Google Scholar 

  25. [25] R. Y. Chen, W. Y. D. Yuen: Oxid. Met., 2003, vol. 59, pp. 433-68.

    Article  CAS  Google Scholar 

  26. [26] G. I. S. D. Caplan, R. J. Hussey, and M. J. Graham: Oxid. Met., 1979, vol. 13, pp. 255-72.

    Article  CAS  Google Scholar 

  27. [27] T. Fukagawa, H. Okada, Y. Maehara: ISIJ Int., 1994, vol. 34, pp. 906-11.

    Article  CAS  Google Scholar 

  28. [28] Y. L. Yang, C. H. Yang, S. N. Lin, C. H. Chen, and W. T. Tsai: Mater. Chem. Phys., 2008, vol. 112, pp. 566-71.

    Article  CAS  Google Scholar 

  29. X. Yuan, Y. Yao, and L. Chen: Acta Metall. Sin. (Engl. Lett.), 2014, vol. 27, pp. 401–06.

  30. [30] C. W. Yang, J. H. Kim, R. E. Triambulo, Y. H. Kang, J. S. Lee, and J. W. Park, J. Alloys Compd., 2013, vol. 549, pp. 6-10.

    Article  CAS  Google Scholar 

  31. [31] J. Ramírez-Cuellar, M. P. Guerrero-Mata, L.A. Leduc, and R. Colás: J. Phys. IV France, 2004, vol. 120, pp. 209-15.

    Article  Google Scholar 

  32. [32] Y. Hidaka, T. Anraku, N. Otsuka: Oxid. Met., 2003, vol. 59, pp. 97-113.

    Article  CAS  Google Scholar 

  33. [33] Y. Xu, X. Zhang, L. Fan, J. Li, X. Yu, X, Xiao, L. Jiang: Corros. Sci., 2015, vol. 100, pp. 311-21.

    Article  CAS  Google Scholar 

  34. [34] S. Wu, J. Yang, G. Cao, Y. Qiu, G. Cheng, M. Yao, and J. Dong: IEEE Access, 2020, vol. 8, pp. 134124-36.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial supports from the Ministry of Science and Technology, China (No. 2017YFB0305002), Liaoning Provincial Support for Innovation (XLYC 1902034), and the Fundamental Research Funds for Central Universities (N2124002-14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Cao or Zhenyu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 6, 2021; accepted June 21, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Wang, H., Gao, X. et al. Machine Learning Model for Thickness Evolution of Oxide Scale During Hot Strip Rolling of Steels. Metall Mater Trans A 52, 4112–4124 (2021). https://doi.org/10.1007/s11661-021-06368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06368-5

Navigation