Skip to main content
Log in

Microstructure and Texture Evolution During Cold Rolling of 316L Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of the deformation microstructure and the local crystallographic orientations are investigated for 10, 30, 50, and 80 pct cold rolled 316L austenitic stainless steel strips and the results are related to the overall macro-texture evolution. The microstructures are characterized by scanning electron microscopy (SEM), including electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The macro-textures are characterized by X-ray diffraction (XRD) measurements. It is found that the deformation leads to both slip and twinning followed by martensite transformation and shear banding. The deformation twinning occurs on planes with the highest twinning Schmid factors and shows a strong orientation dependence, in the sense deformation twinning occurs preferentially in grains with near Copper orientation rather than Brass orientation. It is furthermore found that the formation of both deformation twins and shear bands have a significant effect on the texture evolution. The correlations between microstructure, local crystallographic orientations and macro-textures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Weiss and R. Stickler: Metall. Mater. Trans. B., 1972, vol. 3B, pp. 851–66.

    Article  Google Scholar 

  2. Y. Xiong, Y. Yue, Y. Lu, T. He, M. Fan, F. Ren, and W. Cao: Mater. Sci. Eng. A., 2018, vol. 709, pp. 270–76. .

    Article  CAS  Google Scholar 

  3. S. Kheiri, H. Mirzadeh, and M. Naghizadeh: Mater. Sci. Eng. A., 2019, vol. 759, pp. 90–96. .

    Article  CAS  Google Scholar 

  4. F.K. Yan, N.R. Tao, and K. Lu: Scr. Mater., 2014, vol. 84–85, pp. 31–34. .

    Article  CAS  Google Scholar 

  5. J. Li, Y. Cao, B. Gao, Y. Li, and Y. Zhu: J. Mater. Sci., 2018, vol. 53, pp. 10442–56. .

    Article  CAS  Google Scholar 

  6. T. Leffers: in Deformation of Polycrystals: Mechanisms and Microstructures, Proc. 2nd Risø Int. Symp., N.Hansen, A. Horsewell, T. Leffers, H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1981, pp. 55–71.

  7. D. Juul Jensen, A.W. Thompson, and N. Hansen: Metall. Trans. A., 1989, vol. 20, pp. 2803–10. .

    Article  Google Scholar 

  8. J. Hirsch and K. Lücke: Acta Metall., 1988, vol. 36, pp. 2883–904. .

    Article  CAS  Google Scholar 

  9. Q. Liu, C. Maurice, J. Driver, and N. Hansen: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 2333–44. .

    Article  CAS  Google Scholar 

  10. W.Q. Cao, A. Godfrey, and Q. Liu: Mater. Sci. Eng. A., 2003, vol. 361, pp. 9–14. .

    Article  CAS  Google Scholar 

  11. J. Gil Sevillano, P. van Houtte, and E. Aernoudt: Prog. Mater. Sci., 1980, vol. 25, pp. 69–134. .

    Article  CAS  Google Scholar 

  12. S. Roy, D. Satyaveer Singh, S. Suwas, S. Kumar, and K. Chattopadhyay: Mater. Sci. Eng. A., 2011, vol. 528, pp. 8469–78. .

    Article  CAS  Google Scholar 

  13. L. Remy: Acta Metall., 1978, vol. 26, pp. 443–51. .

    Article  CAS  Google Scholar 

  14. M. Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 2248–56. .

    Article  CAS  Google Scholar 

  15. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A., 2012, vol. 552, pp. 514–22. .

    Article  CAS  Google Scholar 

  16. M.J. Sohrabi, M. Naghizadeh, and H. Mirzadeh: Arch. Civ. Mech. Eng., 2020, vol. 20, p. 20. .

    Article  Google Scholar 

  17. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: Int. J. Plast., 2000, vol. 16, pp. 723–48. .

    Article  CAS  Google Scholar 

  18. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert: Mater. Sci. Eng. A., 2009, vol. 500, pp. 196–206. .

    Article  CAS  Google Scholar 

  19. L. Bracke, K. Verbeken, L. Kestens, and J. Penning: Acta Mater., 2009, vol. 57, pp. 1512–24. .

    Article  CAS  Google Scholar 

  20. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, J.P. Wright, and S. van der Zwaag: Mater. Sci. Eng. A., 2011, vol. 528, pp. 6407–16. .

    Article  CAS  Google Scholar 

  21. J. Hirsch, K. Lücke, and M. Hatherly: Acta Metall., 1988, vol. 36, pp. 2905–27. .

    Article  CAS  Google Scholar 

  22. S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants: Acta Mater., 2004, vol. 52, pp. 2005–12. .

    Article  CAS  Google Scholar 

  23. S.G. Chowdhury, S. Das, and P.K. De: Acta Mater., 2005, vol. 53, pp. 3951–9. .

    Article  CAS  Google Scholar 

  24. M. Odnobokova, A. Belyakov, and R. Kaibyshev: Adv. Eng. Mater., 2015, vol. 17, pp. 1812–20. .

    Article  CAS  Google Scholar 

  25. G. Christiansen, J.R. Bowen, and J. Lindbo: Mater. Charact., 2002, vol. 49, pp. 331–5. .

    Article  CAS  Google Scholar 

  26. H.J. Bunge: Texture Analysis in Materials Science: Mathematical Methods. Butterworths, London, 1982.

    Google Scholar 

  27. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–8. .

    Article  CAS  Google Scholar 

  28. D.A. Hughes and N. Hansen: Metall. Trans. A., 1993, vol. 24, pp. 2022–37. .

    Article  Google Scholar 

  29. G. Kurdjumow and G. Sachs: Z. Phys., 1930, vol. 18, p. 534. .

    Google Scholar 

  30. G. Monnet and M.A. Pouchon: Mater. Lett., 2013, vol. 98, pp. 128–30. .

    Article  CAS  Google Scholar 

  31. D. Molnár, X. Sun, S. Lu, W. Li, G. Engberg, and L. Vitos: Mater. Sci. Eng. A., 2019, vol. 759, pp. 490–7. .

    Article  CAS  Google Scholar 

  32. J.T. Busby, M.C. Hash, and G.S. Was: J. Nucl. Mater., 2005, vol. 336, pp. 267–78. .

    Article  CAS  Google Scholar 

  33. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A., 1989, vol. 113, pp. 1–41. .

    Article  Google Scholar 

  34. D.A. Hughes: Acta Metall. Mater., 1993, vol. 41, pp. 1421–30. .

    Article  CAS  Google Scholar 

  35. X. Huang and G. Winther: Philos. Mag., 2007, vol. 87, pp. 5189–214. .

    Article  CAS  Google Scholar 

  36. D. Kuhlmann-Wilsdorf and N. Hansen: Scr. Metall. Mater., 1991, vol. 25, pp. 1557–62. .

    Article  CAS  Google Scholar 

  37. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–25. .

    Google Scholar 

  38. G. Wassermann: Z. Met., 1963, vol. 54, p. 61. .

    CAS  Google Scholar 

  39. T. Leffers and R.K. Ray: Prog. Mater. Sci., 2009, vol. 54, pp. 351–96. .

    Article  CAS  Google Scholar 

  40. B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield: Met. Sci., 1978, vol. 12, pp. 343–51. .

    Article  CAS  Google Scholar 

  41. E. El-Danaf, S.R. Kalidindi, R.D. Doherty, and C. Necker: Acta Mater., 2000, vol. 48, pp. 2665–73. .

    Article  CAS  Google Scholar 

  42. C. Donadille, R. Valle, P. Dervin, and R. Penelle: Acta Metall., 1989, vol. 37, pp. 1547–71. .

    Article  CAS  Google Scholar 

  43. Y. Lü, B. Hutchinson, D.A. Molodov, and G. Gottstein: Acta Mater., 2010, vol. 58, pp. 3079–90. .

    Article  CAS  Google Scholar 

  44. R. Kumar, B. Mahato, N.R. Bandyopadhyay, and D.K. Bhattacharya: Mater. Sci. Eng. A., 2005, vol. 394, pp. 296–301. .

    Article  CAS  Google Scholar 

  45. H. Paul, A. Morawiec, E. Bouzy, J.J. Fundenberger, A. Piatkowski: Metall. Mater. Trans. A 2004, vol. 35, pp. 3775–86.

  46. J.R. Luo, A. Godfrey, W. Liu, and Q. Liu: Acta Mater., 2012, vol. 60, pp. 1986–98. .

    Article  CAS  Google Scholar 

  47. S. Sinha, J.A. Szpunar, N.A.P. Kiran Kumar, and N.P. Gurao: Mater. Sci. Eng. A., 2015, vol. 637, pp. 48–55. .

    Article  CAS  Google Scholar 

  48. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157. .

    Article  Google Scholar 

  49. S.S. Cai, X.W. Li, and N.R. Tao: J. Mater. Sci. Technol., 2018, vol. 34, pp. 1364–70. .

    Article  Google Scholar 

  50. G.Y. Chin, W.F. Hosford, and D.R. Mendorf: Proc Math. Phys. Eng. Sci., 1969, vol. 309, pp. 433–56. .

    CAS  Google Scholar 

  51. T.S. Byun: Acta Mater., 2003, vol. 51, pp. 3063–71. .

    Article  CAS  Google Scholar 

  52. J.A. Venables: Philos. Mag., 1961, vol. 6, pp. 379–96. .

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 788567) for the M4D Advanced Grant within which this work is performed. CZ further acknowledges the financial support of the China Scholarship Council (CSC) (No. 201706120026). The authors also thank Flemming Bjerg Grumsen for his kind help on the XRD measurements.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 30, 2021; accepted June 21, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Juul Jensen, D. & Yu, T. Microstructure and Texture Evolution During Cold Rolling of 316L Stainless Steel. Metall Mater Trans A 52, 4100–4111 (2021). https://doi.org/10.1007/s11661-021-06367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06367-6

Navigation